deepakkaura26 commited on
Commit
c402081
1 Parent(s): 26db8ef

Upload dpm1.py

Browse files
Files changed (1) hide show
  1. dpm1.py +61 -0
dpm1.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """dpm1
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1PJnjffQq5PpvzMoY1aB5uggxb35r11Ut
8
+ """
9
+
10
+ #!pip install streamlit
11
+
12
+ #!pip install transformers
13
+
14
+ import streamlit as st
15
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
16
+
17
+ model_name = "EleutherAI/gpt-neo-1.3B"
18
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
19
+ model = AutoModelForCausalLM.from_pretrained(model_name)
20
+ generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
21
+
22
+ def generate_job_posting(position, job_type, skillset, company_name, work_experience, job_location, job_benefits, field, currency, currency_format, package, communication, notice_period, qualifications, responsibility):
23
+ context = f"{company_name} is hiring a {position} for a {job_type} position in {job_location}. The ideal candidate will have at least {work_experience} years of experience in {field}, and should be proficient in {skillset}. The job responsibility includes:\n- {responsibility}\nWe offer a {package} package in currency format {currency_format}. The successful candidate will be expected to maintain excellent communication with clients and colleagues. The notice period for this role is {notice_period}, and applicants should have the following qualifications: {qualifications}."
24
+ output = generator(context, max_length=240, do_sample=True, temperature=0.7, num_return_sequences=3)
25
+ def score_output(output_text):
26
+ sentences = output_text.split('.')
27
+ avg_sentence_length = sum(len(s.strip()) for s in sentences) / len(sentences)
28
+ return 1.0 / avg_sentence_length
29
+ sorted_outputs = sorted(output, key=lambda x: score_output(x['generated_text']), reverse=True)
30
+ best_output = sorted_outputs[0]
31
+ output_text = best_output['generated_text'].replace('- job responsibility', f"\n\n- {responsibility}")
32
+ paragraphs = output_text.split('\n\n')
33
+ output_text = '\n\n'.join('\n' + p for p in paragraphs)
34
+ return output_text
35
+
36
+ st.title("Job Posting Generator")
37
+
38
+ position = st.text_input("Enter Position for Job Posting:")
39
+ job_type = st.text_input("Enter Job Type:")
40
+ skillset = st.text_input("Enter Skillset:")
41
+ company_name = st.text_input("Enter Company Name:")
42
+ work_experience = st.text_input("Enter Required Work Experience (in years):")
43
+ job_location = st.text_input("Enter job Location:")
44
+ job_benefits = st.text_input("Enter job benefits:")
45
+ field = st.text_input("Enter job field:")
46
+ currency = st.text_input("Enter Currency:")
47
+ currency_format = st.text_input("Enter Currency Format:")
48
+ package = st.text_input("Enter Package:")
49
+ communication = st.text_input("Enter Communication:")
50
+ notice_period = st.text_input("Enter Notice Period:")
51
+ qualifications = st.text_input("Enter Qualifications:")
52
+ responsibility = st.text_area("Enter Job Responsibility:")
53
+
54
+ if st.button("Generate Job Posting"):
55
+ try:
56
+ output_text = generate_job_posting(position, job_type, skillset, company_name, work_experience, job_location, job_benefits, field, currency, currency_format, package, communication, notice_period, qualifications, responsibility)
57
+ st.success(output_text)
58
+ except ValueError as e:
59
+ st.error(f"Error: {e}")
60
+ except Exception as e:
61
+ st.error(f"An error occurred: {e}")