Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,109 @@
|
|
| 1 |
-
import
|
| 2 |
-
from
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
import random
|
| 6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
| 9 |
CHAR_LIMIT = None if IS_DUPLICATE else 5000
|
| 10 |
-
|
| 11 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
|
|
|
|
|
|
| 12 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
| 13 |
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
|
| 14 |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
| 15 |
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
@spaces.GPU(duration=30)
|
| 18 |
def forward_gpu(ps, ref_s, speed):
|
| 19 |
return models[True](ps, ref_s, speed)
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
| 23 |
pipeline = pipelines[voice[0]]
|
| 24 |
pack = pipeline.load_voice(voice)
|
| 25 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
|
|
|
| 26 |
for _, ps, _ in pipeline(text, voice, speed):
|
| 27 |
ref_s = pack[len(ps)-1]
|
| 28 |
try:
|
|
@@ -30,32 +111,31 @@ def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
| 30 |
audio = forward_gpu(ps, ref_s, speed)
|
| 31 |
else:
|
| 32 |
audio = models[False](ps, ref_s, speed)
|
| 33 |
-
except
|
| 34 |
if use_gpu:
|
| 35 |
-
|
| 36 |
-
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
|
| 37 |
audio = models[False](ps, ref_s, speed)
|
| 38 |
else:
|
| 39 |
-
raise
|
|
|
|
| 40 |
return (24000, audio.numpy()), ps
|
|
|
|
| 41 |
return None, ''
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
return generate_first(text, voice, speed, use_gpu=False)[0]
|
| 46 |
-
|
| 47 |
-
def tokenize_first(text, voice='af_heart'):
|
| 48 |
pipeline = pipelines[voice[0]]
|
| 49 |
for _, ps, _ in pipeline(text, voice):
|
| 50 |
return ps
|
| 51 |
return ''
|
| 52 |
|
| 53 |
-
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
|
|
| 54 |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
| 55 |
pipeline = pipelines[voice[0]]
|
| 56 |
pack = pipeline.load_voice(voice)
|
| 57 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
| 58 |
-
|
| 59 |
for _, ps, _ in pipeline(text, voice, speed):
|
| 60 |
ref_s = pack[len(ps)-1]
|
| 61 |
try:
|
|
@@ -63,138 +143,169 @@ def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
| 63 |
audio = forward_gpu(ps, ref_s, speed)
|
| 64 |
else:
|
| 65 |
audio = models[False](ps, ref_s, speed)
|
| 66 |
-
except
|
| 67 |
if use_gpu:
|
| 68 |
-
|
| 69 |
-
gr.Info('Switching to CPU')
|
| 70 |
audio = models[False](ps, ref_s, speed)
|
| 71 |
else:
|
| 72 |
-
raise
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
first = False
|
| 76 |
-
yield 24000, torch.zeros(1).numpy()
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
def
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
💬 To adjust intonation, try punctuation `;:,.!?—…"()“”` or stress `ˈ` and `ˌ`
|
| 129 |
-
|
| 130 |
-
⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)`
|
| 131 |
-
|
| 132 |
-
⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words)
|
| 133 |
-
'''
|
| 134 |
-
|
| 135 |
-
with gr.Blocks() as generate_tab:
|
| 136 |
-
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
| 137 |
-
generate_btn = gr.Button('Generate', variant='primary')
|
| 138 |
-
with gr.Accordion('Output Tokens', open=True):
|
| 139 |
-
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
|
| 140 |
-
tokenize_btn = gr.Button('Tokenize', variant='secondary')
|
| 141 |
-
gr.Markdown(TOKEN_NOTE)
|
| 142 |
-
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
| 143 |
-
|
| 144 |
-
STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
|
| 145 |
-
if CHAR_LIMIT is not None:
|
| 146 |
-
STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.')
|
| 147 |
-
STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
|
| 148 |
-
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
|
| 149 |
-
|
| 150 |
-
with gr.Blocks() as stream_tab:
|
| 151 |
-
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
|
| 152 |
-
with gr.Row():
|
| 153 |
-
stream_btn = gr.Button('Stream', variant='primary')
|
| 154 |
-
stop_btn = gr.Button('Stop', variant='stop')
|
| 155 |
-
with gr.Accordion('Note', open=True):
|
| 156 |
-
gr.Markdown(STREAM_NOTE)
|
| 157 |
-
gr.DuplicateButton()
|
| 158 |
-
|
| 159 |
-
BANNER_TEXT = '''
|
| 160 |
-
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
|
| 161 |
-
|
| 162 |
-
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
|
| 163 |
-
|
| 164 |
-
This demo only showcases English, but you can directly use the model to access other languages.
|
| 165 |
-
'''
|
| 166 |
-
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
|
| 167 |
-
API_NAME = None if API_OPEN else False
|
| 168 |
-
with gr.Blocks() as app:
|
| 169 |
-
with gr.Row():
|
| 170 |
-
gr.Markdown(BANNER_TEXT, container=True)
|
| 171 |
-
with gr.Row():
|
| 172 |
-
with gr.Column():
|
| 173 |
-
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
|
| 174 |
-
with gr.Row():
|
| 175 |
-
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
| 176 |
-
use_gpu = gr.Dropdown(
|
| 177 |
-
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
|
| 178 |
-
value=CUDA_AVAILABLE,
|
| 179 |
-
label='Hardware',
|
| 180 |
-
info='GPU is usually faster, but has a usage quota',
|
| 181 |
-
interactive=CUDA_AVAILABLE
|
| 182 |
-
)
|
| 183 |
-
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
| 184 |
-
random_btn = gr.Button('🎲 Random Quote 💬', variant='secondary')
|
| 185 |
-
with gr.Row():
|
| 186 |
-
gatsby_btn = gr.Button('🥂 Gatsby 📕', variant='secondary')
|
| 187 |
-
frankenstein_btn = gr.Button('💀 Frankenstein 📗', variant='secondary')
|
| 188 |
-
with gr.Column():
|
| 189 |
-
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
|
| 190 |
-
random_btn.click(fn=get_random_quote, inputs=[], outputs=[text], api_name=API_NAME)
|
| 191 |
-
gatsby_btn.click(fn=get_gatsby, inputs=[], outputs=[text], api_name=API_NAME)
|
| 192 |
-
frankenstein_btn.click(fn=get_frankenstein, inputs=[], outputs=[text], api_name=API_NAME)
|
| 193 |
-
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
|
| 194 |
-
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
|
| 195 |
-
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream], api_name=API_NAME)
|
| 196 |
-
stop_btn.click(fn=None, cancels=stream_event)
|
| 197 |
-
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
| 198 |
-
|
| 199 |
-
if __name__ == '__main__':
|
| 200 |
-
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Query, HTTPException, BackgroundTasks
|
| 2 |
+
from fastapi.responses import StreamingResponse
|
| 3 |
+
from pydantic import BaseModel, Field
|
| 4 |
+
from typing import List, Dict, Optional, Tuple, Generator
|
|
|
|
| 5 |
import torch
|
| 6 |
+
import os
|
| 7 |
+
import io
|
| 8 |
+
import numpy as np
|
| 9 |
+
from kokoro import KModel, KPipeline
|
| 10 |
+
import spaces
|
| 11 |
+
import time
|
| 12 |
|
| 13 |
+
app = FastAPI(title="Kokoro TTS API", description="API for Kokoro text-to-speech conversion")
|
| 14 |
+
|
| 15 |
+
# Constants
|
| 16 |
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
| 17 |
CHAR_LIMIT = None if IS_DUPLICATE else 5000
|
|
|
|
| 18 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
| 19 |
+
|
| 20 |
+
# Initialize models
|
| 21 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
| 22 |
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
|
| 23 |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
| 24 |
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
| 25 |
|
| 26 |
+
# Voice choices
|
| 27 |
+
CHOICES = {
|
| 28 |
+
'🇺🇸 🚺 Heart ❤️': 'af_heart',
|
| 29 |
+
'🇺🇸 🚺 Bella 🔥': 'af_bella',
|
| 30 |
+
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
|
| 31 |
+
'🇺🇸 🚺 Aoede': 'af_aoede',
|
| 32 |
+
'🇺🇸 🚺 Kore': 'af_kore',
|
| 33 |
+
'🇺🇸 🚺 Sarah': 'af_sarah',
|
| 34 |
+
'🇺🇸 🚺 Nova': 'af_nova',
|
| 35 |
+
'🇺🇸 🚺 Sky': 'af_sky',
|
| 36 |
+
'🇺🇸 🚺 Alloy': 'af_alloy',
|
| 37 |
+
'🇺🇸 🚺 Jessica': 'af_jessica',
|
| 38 |
+
'🇺🇸 🚺 River': 'af_river',
|
| 39 |
+
'🇺🇸 🚹 Michael': 'am_michael',
|
| 40 |
+
'🇺🇸 🚹 Fenrir': 'am_fenrir',
|
| 41 |
+
'🇺🇸 🚹 Puck': 'am_puck',
|
| 42 |
+
'🇺🇸 🚹 Echo': 'am_echo',
|
| 43 |
+
'🇺🇸 🚹 Eric': 'am_eric',
|
| 44 |
+
'🇺🇸 🚹 Liam': 'am_liam',
|
| 45 |
+
'🇺🇸 🚹 Onyx': 'am_onyx',
|
| 46 |
+
'🇺🇸 🚹 Santa': 'am_santa',
|
| 47 |
+
'🇺🇸 🚹 Adam': 'am_adam',
|
| 48 |
+
'🇬🇧 🚺 Emma': 'bf_emma',
|
| 49 |
+
'🇬🇧 🚺 Isabella': 'bf_isabella',
|
| 50 |
+
'🇬🇧 🚺 Alice': 'bf_alice',
|
| 51 |
+
'🇬🇧 🚺 Lily': 'bf_lily',
|
| 52 |
+
'🇬🇧 🚹 George': 'bm_george',
|
| 53 |
+
'🇬🇧 🚹 Fable': 'bm_fable',
|
| 54 |
+
'🇬🇧 🚹 Lewis': 'bm_lewis',
|
| 55 |
+
'🇬🇧 🚹 Daniel': 'bm_daniel',
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
# Load voices
|
| 59 |
+
for v in CHOICES.values():
|
| 60 |
+
pipelines[v[0]].load_voice(v)
|
| 61 |
+
|
| 62 |
+
# Sample text files
|
| 63 |
+
with open('en.txt', 'r') as r:
|
| 64 |
+
RANDOM_QUOTES = [line.strip() for line in r]
|
| 65 |
+
|
| 66 |
+
def get_gatsby():
|
| 67 |
+
with open('gatsby5k.md', 'r') as r:
|
| 68 |
+
return r.read().strip()
|
| 69 |
+
|
| 70 |
+
def get_frankenstein():
|
| 71 |
+
with open('frankenstein5k.md', 'r') as r:
|
| 72 |
+
return r.read().strip()
|
| 73 |
+
|
| 74 |
+
# Pydantic models
|
| 75 |
+
class TTSRequest(BaseModel):
|
| 76 |
+
text: str = Field(..., description="Text to convert to speech")
|
| 77 |
+
voice: str = Field("af_heart", description="Voice ID to use for TTS")
|
| 78 |
+
speed: float = Field(1.0, description="Speech speed factor (0.5 to 2.0)", ge=0.5, le=2.0)
|
| 79 |
+
use_gpu: bool = Field(CUDA_AVAILABLE, description="Whether to use GPU for inference")
|
| 80 |
+
|
| 81 |
+
class TextRequest(BaseModel):
|
| 82 |
+
text: str = Field(..., description="Text to tokenize")
|
| 83 |
+
voice: str = Field("af_heart", description="Voice ID to use for tokenization")
|
| 84 |
+
|
| 85 |
+
class Voice(BaseModel):
|
| 86 |
+
display_name: str
|
| 87 |
+
id: str
|
| 88 |
+
language: str
|
| 89 |
+
gender: str
|
| 90 |
+
|
| 91 |
+
class VoiceList(BaseModel):
|
| 92 |
+
voices: List[Voice]
|
| 93 |
+
|
| 94 |
+
# GPU wrapper function
|
| 95 |
@spaces.GPU(duration=30)
|
| 96 |
def forward_gpu(ps, ref_s, speed):
|
| 97 |
return models[True](ps, ref_s, speed)
|
| 98 |
|
| 99 |
+
# Helper functions
|
| 100 |
+
def generate_first(text: str, voice: str = 'af_heart', speed: float = 1.0, use_gpu: bool = CUDA_AVAILABLE):
|
| 101 |
+
"""Generate audio for the first sentence/segment of text"""
|
| 102 |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
| 103 |
pipeline = pipelines[voice[0]]
|
| 104 |
pack = pipeline.load_voice(voice)
|
| 105 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
| 106 |
+
|
| 107 |
for _, ps, _ in pipeline(text, voice, speed):
|
| 108 |
ref_s = pack[len(ps)-1]
|
| 109 |
try:
|
|
|
|
| 111 |
audio = forward_gpu(ps, ref_s, speed)
|
| 112 |
else:
|
| 113 |
audio = models[False](ps, ref_s, speed)
|
| 114 |
+
except Exception as e:
|
| 115 |
if use_gpu:
|
| 116 |
+
# Fallback to CPU
|
|
|
|
| 117 |
audio = models[False](ps, ref_s, speed)
|
| 118 |
else:
|
| 119 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 120 |
+
|
| 121 |
return (24000, audio.numpy()), ps
|
| 122 |
+
|
| 123 |
return None, ''
|
| 124 |
|
| 125 |
+
def tokenize_first(text: str, voice: str = 'af_heart'):
|
| 126 |
+
"""Tokenize the first sentence/segment of text"""
|
|
|
|
|
|
|
|
|
|
| 127 |
pipeline = pipelines[voice[0]]
|
| 128 |
for _, ps, _ in pipeline(text, voice):
|
| 129 |
return ps
|
| 130 |
return ''
|
| 131 |
|
| 132 |
+
def generate_all(text: str, voice: str = 'af_heart', speed: float = 1.0, use_gpu: bool = CUDA_AVAILABLE) -> Generator:
|
| 133 |
+
"""Generate audio for all segments of text"""
|
| 134 |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
| 135 |
pipeline = pipelines[voice[0]]
|
| 136 |
pack = pipeline.load_voice(voice)
|
| 137 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
| 138 |
+
|
| 139 |
for _, ps, _ in pipeline(text, voice, speed):
|
| 140 |
ref_s = pack[len(ps)-1]
|
| 141 |
try:
|
|
|
|
| 143 |
audio = forward_gpu(ps, ref_s, speed)
|
| 144 |
else:
|
| 145 |
audio = models[False](ps, ref_s, speed)
|
| 146 |
+
except Exception as e:
|
| 147 |
if use_gpu:
|
| 148 |
+
# Fallback to CPU
|
|
|
|
| 149 |
audio = models[False](ps, ref_s, speed)
|
| 150 |
else:
|
| 151 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 152 |
+
|
| 153 |
+
yield audio.numpy()
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
def create_wav(audio_data, sample_rate=24000):
|
| 156 |
+
"""Convert numpy array to WAV bytes"""
|
| 157 |
+
import wave
|
| 158 |
+
import struct
|
| 159 |
+
|
| 160 |
+
wav_io = io.BytesIO()
|
| 161 |
+
with wave.open(wav_io, 'wb') as wav_file:
|
| 162 |
+
wav_file.setnchannels(1) # Mono
|
| 163 |
+
wav_file.setsampwidth(2) # 16-bit
|
| 164 |
+
wav_file.setframerate(sample_rate)
|
| 165 |
+
|
| 166 |
+
# Convert float32 to int16
|
| 167 |
+
audio_data = (audio_data * 32767).astype(np.int16)
|
| 168 |
+
wav_file.writeframes(audio_data.tobytes())
|
| 169 |
+
|
| 170 |
+
wav_io.seek(0)
|
| 171 |
+
return wav_io.read()
|
| 172 |
|
| 173 |
+
def stream_wav_chunks(audio_chunks, sample_rate=24000):
|
| 174 |
+
"""Stream WAV chunks as they're generated"""
|
| 175 |
+
# Write WAV header first
|
| 176 |
+
header_io = io.BytesIO()
|
| 177 |
+
with wave.open(header_io, 'wb') as wav_file:
|
| 178 |
+
wav_file.setnchannels(1) # Mono
|
| 179 |
+
wav_file.setsampwidth(2) # 16-bit
|
| 180 |
+
wav_file.setframerate(sample_rate)
|
| 181 |
+
# We don't know the total frames yet
|
| 182 |
+
wav_file.writeframes(b'')
|
| 183 |
+
|
| 184 |
+
# Get header bytes
|
| 185 |
+
header_io.seek(0)
|
| 186 |
+
header_bytes = header_io.read(44) # WAV header is 44 bytes
|
| 187 |
+
yield header_bytes
|
| 188 |
+
|
| 189 |
+
# Stream audio chunks
|
| 190 |
+
for chunk in audio_chunks:
|
| 191 |
+
# Convert float32 to int16
|
| 192 |
+
audio_data = (chunk * 32767).astype(np.int16)
|
| 193 |
+
yield audio_data.tobytes()
|
| 194 |
+
time.sleep(0.1) # Small delay to avoid overwhelming the client
|
| 195 |
|
| 196 |
+
# API Routes
|
| 197 |
+
@app.get("/", tags=["Info"])
|
| 198 |
+
async def root():
|
| 199 |
+
"""API root with basic information"""
|
| 200 |
+
return {
|
| 201 |
+
"message": "Kokoro TTS API",
|
| 202 |
+
"description": "Convert text to speech using Kokoro TTS model",
|
| 203 |
+
"endpoints": {
|
| 204 |
+
"GET /voices": "List available voices",
|
| 205 |
+
"POST /tts": "Convert text to speech",
|
| 206 |
+
"POST /tokenize": "Tokenize text",
|
| 207 |
+
"GET /stream": "Stream audio from text",
|
| 208 |
+
"GET /samples": "Get sample texts"
|
| 209 |
+
}
|
| 210 |
+
}
|
| 211 |
|
| 212 |
+
@app.get("/voices", response_model=VoiceList, tags=["Voices"])
|
| 213 |
+
async def list_voices():
|
| 214 |
+
"""List all available voices"""
|
| 215 |
+
voice_list = []
|
| 216 |
+
for display_name, voice_id in CHOICES.items():
|
| 217 |
+
# Parse display name format: "🇺🇸 🚺 Heart ❤️"
|
| 218 |
+
parts = display_name.split()
|
| 219 |
+
language = "US English" if "🇺🇸" in display_name else "UK English"
|
| 220 |
+
gender = "Female" if "🚺" in display_name else "Male"
|
| 221 |
+
|
| 222 |
+
voice_list.append(Voice(
|
| 223 |
+
display_name=display_name,
|
| 224 |
+
id=voice_id,
|
| 225 |
+
language=language,
|
| 226 |
+
gender=gender
|
| 227 |
+
))
|
| 228 |
+
|
| 229 |
+
return VoiceList(voices=voice_list)
|
| 230 |
|
| 231 |
+
@app.post("/tts", tags=["Text-to-Speech"])
|
| 232 |
+
async def text_to_speech(request: TTSRequest):
|
| 233 |
+
"""Convert text to speech"""
|
| 234 |
+
if request.voice not in CHOICES.values():
|
| 235 |
+
raise HTTPException(status_code=400, detail=f"Voice '{request.voice}' not found. Use /voices to see available options.")
|
| 236 |
+
|
| 237 |
+
result, _ = generate_first(request.text, request.voice, request.speed, request.use_gpu)
|
| 238 |
+
if result is None:
|
| 239 |
+
raise HTTPException(status_code=500, detail="Failed to generate audio")
|
| 240 |
+
|
| 241 |
+
sample_rate, audio_data = result
|
| 242 |
+
wav_bytes = create_wav(audio_data, sample_rate)
|
| 243 |
+
|
| 244 |
+
return StreamingResponse(
|
| 245 |
+
io.BytesIO(wav_bytes),
|
| 246 |
+
media_type="audio/wav",
|
| 247 |
+
headers={"Content-Disposition": f"attachment; filename=tts_{request.voice}.wav"}
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
@app.post("/tokenize", tags=["Text Processing"])
|
| 251 |
+
async def tokenize_text(request: TextRequest):
|
| 252 |
+
"""Tokenize input text"""
|
| 253 |
+
if request.voice not in CHOICES.values():
|
| 254 |
+
raise HTTPException(status_code=400, detail=f"Voice '{request.voice}' not found. Use /voices to see available options.")
|
| 255 |
+
|
| 256 |
+
tokens = tokenize_first(request.text, request.voice)
|
| 257 |
+
return {"text": request.text, "tokens": tokens}
|
| 258 |
+
|
| 259 |
+
@app.get("/stream", tags=["Text-to-Speech"])
|
| 260 |
+
async def stream_tts(
|
| 261 |
+
text: str = Query(..., description="Text to convert to speech"),
|
| 262 |
+
voice: str = Query("af_heart", description="Voice ID"),
|
| 263 |
+
speed: float = Query(1.0, description="Speech speed", ge=0.5, le=2.0),
|
| 264 |
+
use_gpu: bool = Query(CUDA_AVAILABLE, description="Use GPU for inference")
|
| 265 |
+
):
|
| 266 |
+
"""Stream audio from text as it's generated"""
|
| 267 |
+
if voice not in CHOICES.values():
|
| 268 |
+
raise HTTPException(status_code=400, detail=f"Voice '{voice}' not found. Use /voices to see available options.")
|
| 269 |
+
|
| 270 |
+
# Limit text if needed
|
| 271 |
+
if CHAR_LIMIT is not None:
|
| 272 |
+
text = text.strip()[:CHAR_LIMIT]
|
| 273 |
+
|
| 274 |
+
# Create generator for audio chunks
|
| 275 |
+
audio_chunks = generate_all(text, voice, speed, use_gpu)
|
| 276 |
+
|
| 277 |
+
# Stream as WAV
|
| 278 |
+
return StreamingResponse(
|
| 279 |
+
stream_wav_chunks(audio_chunks),
|
| 280 |
+
media_type="audio/wav",
|
| 281 |
+
headers={"Content-Disposition": f"attachment; filename=stream_{voice}.wav"}
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
@app.get("/samples", tags=["Sample Text"])
|
| 285 |
+
async def get_samples():
|
| 286 |
+
"""Get sample texts"""
|
| 287 |
+
import random
|
| 288 |
+
|
| 289 |
+
return {
|
| 290 |
+
"random_quote": random.choice(RANDOM_QUOTES),
|
| 291 |
+
"gatsby_excerpt": get_gatsby()[:200] + "...", # First 200 chars
|
| 292 |
+
"frankenstein_excerpt": get_frankenstein()[:200] + "..." # First 200 chars
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
@app.get("/sample/{sample_type}", tags=["Sample Text"])
|
| 296 |
+
async def get_sample(sample_type: str):
|
| 297 |
+
"""Get a specific sample text"""
|
| 298 |
+
import random
|
| 299 |
+
|
| 300 |
+
if sample_type == "random":
|
| 301 |
+
return {"text": random.choice(RANDOM_QUOTES)}
|
| 302 |
+
elif sample_type == "gatsby":
|
| 303 |
+
return {"text": get_gatsby()}
|
| 304 |
+
elif sample_type == "frankenstein":
|
| 305 |
+
return {"text": get_frankenstein()}
|
| 306 |
+
else:
|
| 307 |
+
raise HTTPException(status_code=404, detail=f"Sample type '{sample_type}' not found")
|
| 308 |
|
| 309 |
+
if __name__ == "__main__":
|
| 310 |
+
import uvicorn
|
| 311 |
+
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|