deep42 commited on
Commit
fcb4d12
·
1 Parent(s): 8a68941

Upload 2 files

Browse files
Files changed (2) hide show
  1. hed.py +79 -0
  2. vit_onnx.onnx +3 -0
hed.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """HED.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1sxAQYKOi_hJozIVNX80ChnznWExGtWXd
8
+
9
+ # IMPORTS
10
+ """
11
+
12
+ import tensorflow as tf # For tensorflow
13
+ import numpy as np # For mathematical computations
14
+ import matplotlib.pyplot as plt # For plotting and Visualization
15
+ import seaborn as sns
16
+ from tensorflow.keras.layers import Input, Layer, Resizing, Rescaling, InputLayer, Conv2D, BatchNormalization, MaxPooling2D, Dropout, Flatten, Dense, RandomRotation, RandomFlip, RandomContrast, ReLU, Add, GlobalAveragePooling2D, Permute
17
+ from tensorflow.keras import Model
18
+ from tensorflow.keras.regularizers import L2
19
+ from tensorflow.keras.losses import CategoricalCrossentropy
20
+ from tensorflow.keras.metrics import CategoricalAccuracy, TopKCategoricalAccuracy
21
+ from tensorflow.keras.optimizers import Adam
22
+ from sklearn.metrics import confusion_matrix
23
+ from tensorflow.keras.callbacks import ModelCheckpoint, Callback
24
+ import cv2
25
+
26
+ """# ONNX"""
27
+
28
+ !pip install onnx
29
+ !pip install onnxruntime
30
+
31
+ import onnx
32
+ import onnxruntime as ort
33
+
34
+ # from google.colab import drive
35
+ # drive.mount('/content/drive')
36
+
37
+
38
+
39
+ """## Predicting Using Onnx Model"""
40
+
41
+ !pip install onnx
42
+ !pip install onnxruntime
43
+
44
+ import onnxruntime as rt
45
+ import onnx
46
+
47
+ """# Creating Web Interface Using Gradio"""
48
+
49
+ !pip install gradio
50
+
51
+ import gradio as gr
52
+
53
+ !pip install onnx
54
+ !pip install onnxruntime
55
+
56
+ import onnxruntime as rt
57
+
58
+ # !cp -r /content/drive/MyDrive/vit_onnx.onnx /content/vit_onnx.onnx
59
+
60
+ import onnx
61
+ model = onnx.load("vit_onnx.onnx")
62
+
63
+ import onnxruntime as ort
64
+ session = ort.InferenceSession("vit_onnx.onnx")
65
+
66
+ input_name = session.get_inputs()[0].name
67
+ output_name = session.get_outputs()[0].name
68
+
69
+ CLASS_NAMES = ["Angry", "Happy", "Sad"]
70
+ def predict_image(im):
71
+ im = tf.expand_dims(tf.cast(im, tf.float32), axis=0).numpy()
72
+ prediction = session.run([output_name], {input_name: im})
73
+ return {CLASS_NAMES[i]: float(prediction[0][0][i]) for i in range(3)}
74
+
75
+ image = gr.inputs.Image(shape=(224, 224))
76
+ label = gr.outputs.Label(num_top_classes=3)
77
+ iface = gr.Interface(fn=predict_image, inputs=image, outputs=label, capture_session=True)
78
+ iface.launch(debug="True")
79
+
vit_onnx.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a24c81c8da0f4c831414b6bca27320ed6f632681eddace226611db5a276e5fa2
3
+ size 343610599