deep-learning-analytics
commited on
Commit
•
a604262
1
Parent(s):
e8c8cc8
added spinners for all tasks
Browse files
app.py
CHANGED
@@ -20,33 +20,38 @@ if raw_image is not None:
|
|
20 |
image = Image.open(raw_image)
|
21 |
image = np.asarray(image)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
with st.spinner('Running inference...'):
|
36 |
outputs = model(pixel_values=pixel_values)# logits are of shape (batch_size, num_labels, height/4, width/4)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
# Show image + mask
|
51 |
img = np.array(image) * 0.5 + color_seg * 0.5
|
52 |
img = img.astype(np.uint8)
|
|
|
20 |
image = Image.open(raw_image)
|
21 |
image = np.asarray(image)
|
22 |
|
23 |
+
with st.spinner('Loading Model...'):
|
24 |
+
feature_extractor = SegformerFeatureExtractor(align=False, reduce_zero_label=False)
|
25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
model = SegformerForSemanticSegmentation.from_pretrained("deep-learning-analytics/segformer_semantic_segmentation",
|
27 |
+
ignore_mismatched_sizes=True,
|
28 |
+
num_labels=len(id2label), id2label=id2label, label2id=label2id,
|
29 |
+
reshape_last_stage=True)
|
30 |
+
model = model.to(device)
|
31 |
+
model.eval()
|
32 |
+
|
33 |
+
with st.spinner('Preparing image...'):
|
34 |
+
# prepare the image for the model (aligned resize)
|
35 |
+
feature_extractor_inference = SegformerFeatureExtractor(do_random_crop=False, do_pad=False)
|
36 |
+
pixel_values = feature_extractor_inference(image, return_tensors="pt").pixel_values.to(device)
|
37 |
|
38 |
with st.spinner('Running inference...'):
|
39 |
outputs = model(pixel_values=pixel_values)# logits are of shape (batch_size, num_labels, height/4, width/4)
|
40 |
+
|
41 |
+
with st.spinner('Postprocessing...'):
|
42 |
+
logits = outputs.logits.cpu()
|
43 |
+
# First, rescale logits to original image size
|
44 |
+
upsampled_logits = nn.functional.interpolate(logits,
|
45 |
+
size=image.shape[:-1], # (height, width)
|
46 |
+
mode='bilinear',
|
47 |
+
align_corners=False)
|
48 |
+
# Second, apply argmax on the class dimension
|
49 |
+
seg = upsampled_logits.argmax(dim=1)[0]
|
50 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
|
51 |
+
for label, color in enumerate(palette):
|
52 |
+
color_seg[seg == label, :] = color
|
53 |
+
# Convert to BGR
|
54 |
+
color_seg = color_seg[..., ::-1]
|
55 |
# Show image + mask
|
56 |
img = np.array(image) * 0.5 + color_seg * 0.5
|
57 |
img = img.astype(np.uint8)
|