deep-learning-analytics commited on
Commit
8f9088a
1 Parent(s): ed646ee

inference script

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.metrics import accuracy_score
2
+ import os
3
+ import pandas as pd
4
+ # import cv2
5
+ import numpy as np
6
+ import torch
7
+ from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
8
+ from torch import nn
9
+ import streamlit as st
10
+
11
+
12
+ raw_image = st.file_uploader('Raw Input Image')
13
+ if raw_image is not None:
14
+
15
+ df = pd.read_csv('class_dict_seg.csv')
16
+ classes = df['name']
17
+ palette = df[[' r', ' g', ' b']].values
18
+ id2label = classes.to_dict()
19
+ label2id = {v: k for k, v in id2label.items()}
20
+
21
+ image = np.asarray(raw_image)
22
+
23
+ feature_extractor = SegformerFeatureExtractor(align=False, reduce_zero_label=False)
24
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
25
+ model = SegformerForSemanticSegmentation.from_pretrained("deep-learning-analytics/segformer_semantic_segmentation",
26
+ ignore_mismatched_sizes=True,
27
+ num_labels=len(id2label), id2label=id2label, label2id=label2id,
28
+ reshape_last_stage=True)
29
+ model = model.to(device)
30
+
31
+ # prepare the image for the model (aligned resize)
32
+ feature_extractor_inference = SegformerFeatureExtractor(do_random_crop=False, do_pad=False)
33
+
34
+ pixel_values = feature_extractor_inference(image, return_tensors="pt").pixel_values.to(device)
35
+ model.eval()
36
+ outputs = model(pixel_values=pixel_values)# logits are of shape (batch_size, num_labels, height/4, width/4)
37
+ logits = outputs.logits.cpu()
38
+
39
+ # First, rescale logits to original image size
40
+ upsampled_logits = nn.functional.interpolate(logits,
41
+ size=image.shape[:-1], # (height, width)
42
+ mode='bilinear',
43
+ align_corners=False)
44
+
45
+ # Second, apply argmax on the class dimension
46
+ seg = upsampled_logits.argmax(dim=1)[0]
47
+ color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
48
+ for label, color in enumerate(palette):
49
+ color_seg[seg == label, :] = color
50
+ # Convert to BGR
51
+ color_seg = color_seg[..., ::-1]
52
+
53
+ # Show image + mask
54
+ img = np.array(image) * 0.5 + color_seg * 0.5
55
+ img = img.astype(np.uint8)
56
+
57
+ st.image(img, caption="Segmented Image")