Commit
·
432e4a1
1
Parent(s):
a04ec84
reading image with PIL
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
|
|
|
| 5 |
from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
|
| 6 |
from torch import nn
|
| 7 |
import streamlit as st
|
|
@@ -9,14 +10,14 @@ import streamlit as st
|
|
| 9 |
|
| 10 |
raw_image = st.file_uploader('Raw Input Image')
|
| 11 |
if raw_image is not None:
|
| 12 |
-
|
| 13 |
df = pd.read_csv('class_dict_seg.csv')
|
| 14 |
classes = df['name']
|
| 15 |
palette = df[[' r', ' g', ' b']].values
|
| 16 |
id2label = classes.to_dict()
|
| 17 |
label2id = {v: k for k, v in id2label.items()}
|
| 18 |
|
| 19 |
-
image =
|
|
|
|
| 20 |
|
| 21 |
feature_extractor = SegformerFeatureExtractor(align=False, reduce_zero_label=False)
|
| 22 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -25,21 +26,17 @@ if raw_image is not None:
|
|
| 25 |
num_labels=len(id2label), id2label=id2label, label2id=label2id,
|
| 26 |
reshape_last_stage=True)
|
| 27 |
model = model.to(device)
|
| 28 |
-
|
| 29 |
# prepare the image for the model (aligned resize)
|
| 30 |
feature_extractor_inference = SegformerFeatureExtractor(do_random_crop=False, do_pad=False)
|
| 31 |
-
|
| 32 |
pixel_values = feature_extractor_inference(image, return_tensors="pt").pixel_values.to(device)
|
| 33 |
model.eval()
|
| 34 |
outputs = model(pixel_values=pixel_values)# logits are of shape (batch_size, num_labels, height/4, width/4)
|
| 35 |
logits = outputs.logits.cpu()
|
| 36 |
-
|
| 37 |
# First, rescale logits to original image size
|
| 38 |
upsampled_logits = nn.functional.interpolate(logits,
|
| 39 |
size=image.shape[:-1], # (height, width)
|
| 40 |
mode='bilinear',
|
| 41 |
align_corners=False)
|
| 42 |
-
|
| 43 |
# Second, apply argmax on the class dimension
|
| 44 |
seg = upsampled_logits.argmax(dim=1)[0]
|
| 45 |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
|
|
@@ -47,9 +44,7 @@ if raw_image is not None:
|
|
| 47 |
color_seg[seg == label, :] = color
|
| 48 |
# Convert to BGR
|
| 49 |
color_seg = color_seg[..., ::-1]
|
| 50 |
-
|
| 51 |
# Show image + mask
|
| 52 |
img = np.array(image) * 0.5 + color_seg * 0.5
|
| 53 |
img = img.astype(np.uint8)
|
| 54 |
-
|
| 55 |
st.image(img, caption="Segmented Image")
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
|
| 7 |
from torch import nn
|
| 8 |
import streamlit as st
|
|
|
|
| 10 |
|
| 11 |
raw_image = st.file_uploader('Raw Input Image')
|
| 12 |
if raw_image is not None:
|
|
|
|
| 13 |
df = pd.read_csv('class_dict_seg.csv')
|
| 14 |
classes = df['name']
|
| 15 |
palette = df[[' r', ' g', ' b']].values
|
| 16 |
id2label = classes.to_dict()
|
| 17 |
label2id = {v: k for k, v in id2label.items()}
|
| 18 |
|
| 19 |
+
image = Image.open(raw_image)
|
| 20 |
+
image = np.asarray(image)
|
| 21 |
|
| 22 |
feature_extractor = SegformerFeatureExtractor(align=False, reduce_zero_label=False)
|
| 23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 26 |
num_labels=len(id2label), id2label=id2label, label2id=label2id,
|
| 27 |
reshape_last_stage=True)
|
| 28 |
model = model.to(device)
|
|
|
|
| 29 |
# prepare the image for the model (aligned resize)
|
| 30 |
feature_extractor_inference = SegformerFeatureExtractor(do_random_crop=False, do_pad=False)
|
|
|
|
| 31 |
pixel_values = feature_extractor_inference(image, return_tensors="pt").pixel_values.to(device)
|
| 32 |
model.eval()
|
| 33 |
outputs = model(pixel_values=pixel_values)# logits are of shape (batch_size, num_labels, height/4, width/4)
|
| 34 |
logits = outputs.logits.cpu()
|
|
|
|
| 35 |
# First, rescale logits to original image size
|
| 36 |
upsampled_logits = nn.functional.interpolate(logits,
|
| 37 |
size=image.shape[:-1], # (height, width)
|
| 38 |
mode='bilinear',
|
| 39 |
align_corners=False)
|
|
|
|
| 40 |
# Second, apply argmax on the class dimension
|
| 41 |
seg = upsampled_logits.argmax(dim=1)[0]
|
| 42 |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
|
|
|
|
| 44 |
color_seg[seg == label, :] = color
|
| 45 |
# Convert to BGR
|
| 46 |
color_seg = color_seg[..., ::-1]
|
|
|
|
| 47 |
# Show image + mask
|
| 48 |
img = np.array(image) * 0.5 + color_seg * 0.5
|
| 49 |
img = img.astype(np.uint8)
|
|
|
|
| 50 |
st.image(img, caption="Segmented Image")
|