Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
tokenizer = AutoTokenizer.from_pretrained("deep-learning-analytics/automatic-title-generation") | |
model = AutoModelForSeq2SeqLM.from_pretrained("deep-learning-analytics/automatic-title-generation") | |
def tokenize_data(text): | |
# Tokenize the review body | |
input_ = str(text) + ' </s>' | |
max_len = 120 | |
# tokenize inputs | |
tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt') | |
inputs={"input_ids": tokenized_inputs['input_ids'], | |
"attention_mask": tokenized_inputs['attention_mask']} | |
return inputs | |
def generate_answers(text): | |
inputs = tokenize_data(text) | |
results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True, | |
max_length=120, | |
top_k=120, | |
top_p=0.98, | |
early_stopping=True, | |
num_return_sequences=1) | |
answer = tokenizer.decode(results[0], skip_special_tokens=True) | |
return answer | |
iface = gr.Interface(fn=generate_answers, inputs=['text'], outputs=["text"]) | |
iface.launch(inline=False, share=True) |