Spaces:
Running
Running
add closest word search if query isn't in the KeyedVector's vocabulary
Browse files- vectorizer.py +20 -2
vectorizer.py
CHANGED
|
@@ -52,10 +52,24 @@ class Vectorizer:
|
|
| 52 |
|
| 53 |
def encode(self, word):
|
| 54 |
print(f"encoding {word}")
|
| 55 |
-
if self.kv is
|
|
|
|
|
|
|
|
|
|
| 56 |
return self.kv[word]
|
| 57 |
else:
|
| 58 |
print(f"Error: {word} is not in the KeyedVector's vocabulary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
return None
|
| 60 |
|
| 61 |
def encode_and_format(self, word):
|
|
@@ -70,10 +84,11 @@ class Vectorizer:
|
|
| 70 |
try:
|
| 71 |
await self.ensure_supabase_initialized()
|
| 72 |
query_embedding = self.encode(query)
|
|
|
|
| 73 |
if query_embedding is None:
|
| 74 |
return {
|
| 75 |
"match": False,
|
| 76 |
-
"error": f"'{query}' not in vocabulary"
|
| 77 |
}
|
| 78 |
|
| 79 |
query_embedding = query_embedding.tolist()
|
|
@@ -139,8 +154,11 @@ def load_filtered_kv(model_name='word2vec-google-news-300', vocab=None):
|
|
| 139 |
async def main():
|
| 140 |
vectorizer = Vectorizer()
|
| 141 |
|
|
|
|
| 142 |
vector = vectorizer.encode("test")
|
| 143 |
print(vector)
|
|
|
|
|
|
|
| 144 |
result = await vectorizer.vector_query_from_supabase("dog")
|
| 145 |
print(result)
|
| 146 |
result = await vectorizer.vector_query_from_supabase("cat")
|
|
|
|
| 52 |
|
| 53 |
def encode(self, word):
|
| 54 |
print(f"encoding {word}")
|
| 55 |
+
if self.kv is None:
|
| 56 |
+
print("KeyedVectors not loaded")
|
| 57 |
+
return None
|
| 58 |
+
if word in self.kv.key_to_index:
|
| 59 |
return self.kv[word]
|
| 60 |
else:
|
| 61 |
print(f"Error: {word} is not in the KeyedVector's vocabulary")
|
| 62 |
+
# Try to find closest match
|
| 63 |
+
try:
|
| 64 |
+
closest_matches = self.kv.most_similar(word, topn=3)
|
| 65 |
+
if closest_matches:
|
| 66 |
+
closest_word = closest_matches[0][0]
|
| 67 |
+
print(f"Using closest match '{closest_word}' for '{word}'")
|
| 68 |
+
return self.kv[closest_word]
|
| 69 |
+
else:
|
| 70 |
+
print(f"No similar words found for '{word}'")
|
| 71 |
+
except Exception as e:
|
| 72 |
+
print(f"Error finding similar words: {e}")
|
| 73 |
return None
|
| 74 |
|
| 75 |
def encode_and_format(self, word):
|
|
|
|
| 84 |
try:
|
| 85 |
await self.ensure_supabase_initialized()
|
| 86 |
query_embedding = self.encode(query)
|
| 87 |
+
|
| 88 |
if query_embedding is None:
|
| 89 |
return {
|
| 90 |
"match": False,
|
| 91 |
+
"error": f"'{query}' not in vocabulary and no similar words found"
|
| 92 |
}
|
| 93 |
|
| 94 |
query_embedding = query_embedding.tolist()
|
|
|
|
| 154 |
async def main():
|
| 155 |
vectorizer = Vectorizer()
|
| 156 |
|
| 157 |
+
# Test exact word match
|
| 158 |
vector = vectorizer.encode("test")
|
| 159 |
print(vector)
|
| 160 |
+
|
| 161 |
+
# Test words not in vocabulary with closest match fallback
|
| 162 |
result = await vectorizer.vector_query_from_supabase("dog")
|
| 163 |
print(result)
|
| 164 |
result = await vectorizer.vector_query_from_supabase("cat")
|