Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
| 6 |
+
from llama_index.llms.openai import OpenAI
|
| 7 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# ======================
|
| 11 |
+
# Config (safe defaults)
|
| 12 |
+
# ======================
|
| 13 |
+
MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
|
| 14 |
+
EMBED_MODEL = os.getenv("OPENAI_EMBED_MODEL", "text-embedding-3-small")
|
| 15 |
+
TOP_K = int(os.getenv("TOP_K", "3"))
|
| 16 |
+
|
| 17 |
+
# Your knowledge base file in the Space repo
|
| 18 |
+
DOC_PATH = Path(os.getenv("DOC_PATH", "challenge_context.txt"))
|
| 19 |
+
|
| 20 |
+
SYSTEM_GUARDRAILS = (
|
| 21 |
+
"You are Challenge Copilot. Answer ONLY using the provided context. "
|
| 22 |
+
"If the answer is not in the context, say: 'I don’t know based on the current document.' "
|
| 23 |
+
"Then ask the user to add the missing official details to challenge_context.txt."
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# ======================
|
| 28 |
+
# Build index (cached)
|
| 29 |
+
# ======================
|
| 30 |
+
_INDEX = None
|
| 31 |
+
_QUERY_ENGINE = None
|
| 32 |
+
|
| 33 |
+
def build_index():
|
| 34 |
+
global _INDEX, _QUERY_ENGINE
|
| 35 |
+
|
| 36 |
+
if _QUERY_ENGINE is not None:
|
| 37 |
+
return _QUERY_ENGINE
|
| 38 |
+
|
| 39 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
| 40 |
+
if not api_key:
|
| 41 |
+
raise RuntimeError(
|
| 42 |
+
"OPENAI_API_KEY is missing. Add it in the Space Settings → Variables and secrets."
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
if not DOC_PATH.exists():
|
| 46 |
+
# Create a placeholder so the Space boots even if you forgot the file
|
| 47 |
+
DOC_PATH.write_text(
|
| 48 |
+
"Add the official Building AI Application Challenge content here.\n",
|
| 49 |
+
encoding="utf-8",
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# LlamaIndex global settings
|
| 53 |
+
Settings.llm = OpenAI(model=MODEL, temperature=0.2)
|
| 54 |
+
Settings.embed_model = OpenAIEmbedding(model=EMBED_MODEL)
|
| 55 |
+
Settings.chunk_size = 800
|
| 56 |
+
Settings.chunk_overlap = 120
|
| 57 |
+
|
| 58 |
+
# Reader expects a directory
|
| 59 |
+
data_dir = str(DOC_PATH.parent)
|
| 60 |
+
docs = SimpleDirectoryReader(
|
| 61 |
+
input_dir=data_dir,
|
| 62 |
+
required_exts=[".txt"],
|
| 63 |
+
recursive=False
|
| 64 |
+
).load_data()
|
| 65 |
+
|
| 66 |
+
# Only index the target file
|
| 67 |
+
docs = [d for d in docs if d.metadata.get("file_name") == DOC_PATH.name]
|
| 68 |
+
if not docs:
|
| 69 |
+
raise FileNotFoundError(f"Could not load {DOC_PATH.name}. Make sure it exists in the repo.")
|
| 70 |
+
|
| 71 |
+
_INDEX = VectorStoreIndex.from_documents(docs)
|
| 72 |
+
_QUERY_ENGINE = _INDEX.as_query_engine(similarity_top_k=TOP_K)
|
| 73 |
+
return _QUERY_ENGINE
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def format_sources(resp, max_sources=3, max_chars=220):
|
| 77 |
+
lines = []
|
| 78 |
+
for i, sn in enumerate(getattr(resp, "source_nodes", [])[:max_sources], start=1):
|
| 79 |
+
fn = sn.node.metadata.get("file_name", "unknown")
|
| 80 |
+
snippet = sn.node.get_content().replace("\n", " ").strip()[:max_chars]
|
| 81 |
+
score = getattr(sn, "score", None)
|
| 82 |
+
score_txt = f" (score={score:.3f})" if isinstance(score, (float, int)) else ""
|
| 83 |
+
lines.append(f"{i}. {fn}{score_txt}: {snippet}...")
|
| 84 |
+
return "\n".join(lines) if lines else "No sources returned."
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def chat(message, history):
|
| 88 |
+
qe = build_index()
|
| 89 |
+
|
| 90 |
+
prompt = (
|
| 91 |
+
f"{SYSTEM_GUARDRAILS}\n\n"
|
| 92 |
+
f"User question: {message}\n"
|
| 93 |
+
f"Answer using ONLY the context."
|
| 94 |
+
)
|
| 95 |
+
resp = qe.query(prompt)
|
| 96 |
+
answer = str(resp).strip()
|
| 97 |
+
|
| 98 |
+
show_sources = os.getenv("SHOW_SOURCES", "true").lower() == "true"
|
| 99 |
+
if show_sources:
|
| 100 |
+
answer += "\n\n---\nSources:\n" + format_sources(resp, max_sources=TOP_K)
|
| 101 |
+
|
| 102 |
+
return answer
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
demo = gr.ChatInterface(
|
| 106 |
+
fn=chat,
|
| 107 |
+
title="Challenge Copilot — RAG Q&A Bot",
|
| 108 |
+
description="Ask questions about the Building AI Application Challenge using challenge_context.txt (LlamaIndex + OpenAI).",
|
| 109 |
+
examples=[
|
| 110 |
+
"What will I build in this live session?",
|
| 111 |
+
"Who is this best for?",
|
| 112 |
+
"What are the prerequisites?"
|
| 113 |
+
],
|
| 114 |
+
theme="soft"
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
demo.launch()
|