Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
import argparse | |
import os | |
import jax as jnp | |
import numpy as onp | |
import torch | |
import torch.nn as nn | |
from music_spectrogram_diffusion import inference | |
from t5x import checkpoints | |
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline | |
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder | |
MODEL = "base_with_context" | |
def load_notes_encoder(weights, model): | |
model.token_embedder.weight = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"])) | |
model.position_encoding.weight = nn.Parameter( | |
torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False | |
) | |
for lyr_num, lyr in enumerate(model.encoders): | |
ly_weight = weights[f"layers_{lyr_num}"] | |
lyr.layer[0].layer_norm.weight = nn.Parameter( | |
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"]) | |
) | |
attention_weights = ly_weight["attention"] | |
lyr.layer[0].SelfAttention.q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) | |
lyr.layer[0].SelfAttention.k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) | |
lyr.layer[0].SelfAttention.v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) | |
lyr.layer[0].SelfAttention.o.weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) | |
lyr.layer[1].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) | |
lyr.layer[1].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) | |
lyr.layer[1].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) | |
lyr.layer[1].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) | |
model.layer_norm.weight = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"])) | |
return model | |
def load_continuous_encoder(weights, model): | |
model.input_proj.weight = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T)) | |
model.position_encoding.weight = nn.Parameter( | |
torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False | |
) | |
for lyr_num, lyr in enumerate(model.encoders): | |
ly_weight = weights[f"layers_{lyr_num}"] | |
attention_weights = ly_weight["attention"] | |
lyr.layer[0].SelfAttention.q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) | |
lyr.layer[0].SelfAttention.k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) | |
lyr.layer[0].SelfAttention.v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) | |
lyr.layer[0].SelfAttention.o.weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) | |
lyr.layer[0].layer_norm.weight = nn.Parameter( | |
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"]) | |
) | |
lyr.layer[1].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) | |
lyr.layer[1].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) | |
lyr.layer[1].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) | |
lyr.layer[1].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) | |
model.layer_norm.weight = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"])) | |
return model | |
def load_decoder(weights, model): | |
model.conditioning_emb[0].weight = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T)) | |
model.conditioning_emb[2].weight = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T)) | |
model.position_encoding.weight = nn.Parameter( | |
torch.FloatTensor(weights["Embed_0"]["embedding"]), requires_grad=False | |
) | |
model.continuous_inputs_projection.weight = nn.Parameter( | |
torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T) | |
) | |
for lyr_num, lyr in enumerate(model.decoders): | |
ly_weight = weights[f"layers_{lyr_num}"] | |
lyr.layer[0].layer_norm.weight = nn.Parameter( | |
torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"]) | |
) | |
lyr.layer[0].FiLMLayer.scale_bias.weight = nn.Parameter( | |
torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T) | |
) | |
attention_weights = ly_weight["self_attention"] | |
lyr.layer[0].attention.to_q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) | |
lyr.layer[0].attention.to_k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) | |
lyr.layer[0].attention.to_v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) | |
lyr.layer[0].attention.to_out[0].weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) | |
attention_weights = ly_weight["MultiHeadDotProductAttention_0"] | |
lyr.layer[1].attention.to_q.weight = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) | |
lyr.layer[1].attention.to_k.weight = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) | |
lyr.layer[1].attention.to_v.weight = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) | |
lyr.layer[1].attention.to_out[0].weight = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) | |
lyr.layer[1].layer_norm.weight = nn.Parameter( | |
torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"]) | |
) | |
lyr.layer[2].layer_norm.weight = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) | |
lyr.layer[2].film.scale_bias.weight = nn.Parameter( | |
torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T) | |
) | |
lyr.layer[2].DenseReluDense.wi_0.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) | |
lyr.layer[2].DenseReluDense.wi_1.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) | |
lyr.layer[2].DenseReluDense.wo.weight = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) | |
model.decoder_norm.weight = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"])) | |
model.spec_out.weight = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T)) | |
return model | |
def main(args): | |
t5_checkpoint = checkpoints.load_t5x_checkpoint(args.checkpoint_path) | |
t5_checkpoint = jnp.tree_util.tree_map(onp.array, t5_checkpoint) | |
gin_overrides = [ | |
"from __gin__ import dynamic_registration", | |
"from music_spectrogram_diffusion.models.diffusion import diffusion_utils", | |
"diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", | |
"diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", | |
] | |
gin_file = os.path.join(args.checkpoint_path, "..", "config.gin") | |
gin_config = inference.parse_training_gin_file(gin_file, gin_overrides) | |
synth_model = inference.InferenceModel(args.checkpoint_path, gin_config) | |
scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2", variance_type="fixed_large") | |
notes_encoder = SpectrogramNotesEncoder( | |
max_length=synth_model.sequence_length["inputs"], | |
vocab_size=synth_model.model.module.config.vocab_size, | |
d_model=synth_model.model.module.config.emb_dim, | |
dropout_rate=synth_model.model.module.config.dropout_rate, | |
num_layers=synth_model.model.module.config.num_encoder_layers, | |
num_heads=synth_model.model.module.config.num_heads, | |
d_kv=synth_model.model.module.config.head_dim, | |
d_ff=synth_model.model.module.config.mlp_dim, | |
feed_forward_proj="gated-gelu", | |
) | |
continuous_encoder = SpectrogramContEncoder( | |
input_dims=synth_model.audio_codec.n_dims, | |
targets_context_length=synth_model.sequence_length["targets_context"], | |
d_model=synth_model.model.module.config.emb_dim, | |
dropout_rate=synth_model.model.module.config.dropout_rate, | |
num_layers=synth_model.model.module.config.num_encoder_layers, | |
num_heads=synth_model.model.module.config.num_heads, | |
d_kv=synth_model.model.module.config.head_dim, | |
d_ff=synth_model.model.module.config.mlp_dim, | |
feed_forward_proj="gated-gelu", | |
) | |
decoder = T5FilmDecoder( | |
input_dims=synth_model.audio_codec.n_dims, | |
targets_length=synth_model.sequence_length["targets_context"], | |
max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, | |
d_model=synth_model.model.module.config.emb_dim, | |
num_layers=synth_model.model.module.config.num_decoder_layers, | |
num_heads=synth_model.model.module.config.num_heads, | |
d_kv=synth_model.model.module.config.head_dim, | |
d_ff=synth_model.model.module.config.mlp_dim, | |
dropout_rate=synth_model.model.module.config.dropout_rate, | |
) | |
notes_encoder = load_notes_encoder(t5_checkpoint["target"]["token_encoder"], notes_encoder) | |
continuous_encoder = load_continuous_encoder(t5_checkpoint["target"]["continuous_encoder"], continuous_encoder) | |
decoder = load_decoder(t5_checkpoint["target"]["decoder"], decoder) | |
melgan = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder") | |
pipe = SpectrogramDiffusionPipeline( | |
notes_encoder=notes_encoder, | |
continuous_encoder=continuous_encoder, | |
decoder=decoder, | |
scheduler=scheduler, | |
melgan=melgan, | |
) | |
if args.save: | |
pipe.save_pretrained(args.output_path) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") | |
parser.add_argument( | |
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." | |
) | |
parser.add_argument( | |
"--checkpoint_path", | |
default=f"{MODEL}/checkpoint_500000", | |
type=str, | |
required=False, | |
help="Path to the original jax model checkpoint.", | |
) | |
args = parser.parse_args() | |
main(args) | |