Spaces:
Running
on
Zero
Running
on
Zero
import glob | |
import os | |
from typing import Dict, List, Union | |
import torch | |
from diffusers.utils import is_safetensors_available | |
if is_safetensors_available(): | |
import safetensors.torch | |
from huggingface_hub import snapshot_download | |
from diffusers import DiffusionPipeline, __version__ | |
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME | |
from diffusers.utils import CONFIG_NAME, DIFFUSERS_CACHE, ONNX_WEIGHTS_NAME, WEIGHTS_NAME | |
class CheckpointMergerPipeline(DiffusionPipeline): | |
""" | |
A class that that supports merging diffusion models based on the discussion here: | |
https://github.com/huggingface/diffusers/issues/877 | |
Example usage:- | |
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py") | |
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True) | |
merged_pipe.to('cuda') | |
prompt = "An astronaut riding a unicycle on Mars" | |
results = merged_pipe(prompt) | |
## For more details, see the docstring for the merge method. | |
""" | |
def __init__(self): | |
self.register_to_config() | |
super().__init__() | |
def _compare_model_configs(self, dict0, dict1): | |
if dict0 == dict1: | |
return True | |
else: | |
config0, meta_keys0 = self._remove_meta_keys(dict0) | |
config1, meta_keys1 = self._remove_meta_keys(dict1) | |
if config0 == config1: | |
print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.") | |
return True | |
return False | |
def _remove_meta_keys(self, config_dict: Dict): | |
meta_keys = [] | |
temp_dict = config_dict.copy() | |
for key in config_dict.keys(): | |
if key.startswith("_"): | |
temp_dict.pop(key) | |
meta_keys.append(key) | |
return (temp_dict, meta_keys) | |
def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs): | |
""" | |
Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed | |
in the argument 'pretrained_model_name_or_path_list' as a list. | |
Parameters: | |
----------- | |
pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format. | |
**kwargs: | |
Supports all the default DiffusionPipeline.get_config_dict kwargs viz.. | |
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map. | |
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha | |
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2 | |
interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_diff" and None. | |
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_diff" is supported. | |
force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False. | |
""" | |
# Default kwargs from DiffusionPipeline | |
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
resume_download = kwargs.pop("resume_download", False) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
revision = kwargs.pop("revision", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
device_map = kwargs.pop("device_map", None) | |
alpha = kwargs.pop("alpha", 0.5) | |
interp = kwargs.pop("interp", None) | |
print("Received list", pretrained_model_name_or_path_list) | |
print(f"Combining with alpha={alpha}, interpolation mode={interp}") | |
checkpoint_count = len(pretrained_model_name_or_path_list) | |
# Ignore result from model_index_json comparision of the two checkpoints | |
force = kwargs.pop("force", False) | |
# If less than 2 checkpoints, nothing to merge. If more than 3, not supported for now. | |
if checkpoint_count > 3 or checkpoint_count < 2: | |
raise ValueError( | |
"Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being" | |
" passed." | |
) | |
print("Received the right number of checkpoints") | |
# chkpt0, chkpt1 = pretrained_model_name_or_path_list[0:2] | |
# chkpt2 = pretrained_model_name_or_path_list[2] if checkpoint_count == 3 else None | |
# Validate that the checkpoints can be merged | |
# Step 1: Load the model config and compare the checkpoints. We'll compare the model_index.json first while ignoring the keys starting with '_' | |
config_dicts = [] | |
for pretrained_model_name_or_path in pretrained_model_name_or_path_list: | |
config_dict = DiffusionPipeline.load_config( | |
pretrained_model_name_or_path, | |
cache_dir=cache_dir, | |
resume_download=resume_download, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
) | |
config_dicts.append(config_dict) | |
comparison_result = True | |
for idx in range(1, len(config_dicts)): | |
comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx]) | |
if not force and comparison_result is False: | |
raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.") | |
print(config_dicts[0], config_dicts[1]) | |
print("Compatible model_index.json files found") | |
# Step 2: Basic Validation has succeeded. Let's download the models and save them into our local files. | |
cached_folders = [] | |
for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts): | |
folder_names = [k for k in config_dict.keys() if not k.startswith("_")] | |
allow_patterns = [os.path.join(k, "*") for k in folder_names] | |
allow_patterns += [ | |
WEIGHTS_NAME, | |
SCHEDULER_CONFIG_NAME, | |
CONFIG_NAME, | |
ONNX_WEIGHTS_NAME, | |
DiffusionPipeline.config_name, | |
] | |
requested_pipeline_class = config_dict.get("_class_name") | |
user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class} | |
cached_folder = ( | |
pretrained_model_name_or_path | |
if os.path.isdir(pretrained_model_name_or_path) | |
else snapshot_download( | |
pretrained_model_name_or_path, | |
cache_dir=cache_dir, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
allow_patterns=allow_patterns, | |
user_agent=user_agent, | |
) | |
) | |
print("Cached Folder", cached_folder) | |
cached_folders.append(cached_folder) | |
# Step 3:- | |
# Load the first checkpoint as a diffusion pipeline and modify its module state_dict in place | |
final_pipe = DiffusionPipeline.from_pretrained( | |
cached_folders[0], torch_dtype=torch_dtype, device_map=device_map | |
) | |
final_pipe.to(self.device) | |
checkpoint_path_2 = None | |
if len(cached_folders) > 2: | |
checkpoint_path_2 = os.path.join(cached_folders[2]) | |
if interp == "sigmoid": | |
theta_func = CheckpointMergerPipeline.sigmoid | |
elif interp == "inv_sigmoid": | |
theta_func = CheckpointMergerPipeline.inv_sigmoid | |
elif interp == "add_diff": | |
theta_func = CheckpointMergerPipeline.add_difference | |
else: | |
theta_func = CheckpointMergerPipeline.weighted_sum | |
# Find each module's state dict. | |
for attr in final_pipe.config.keys(): | |
if not attr.startswith("_"): | |
checkpoint_path_1 = os.path.join(cached_folders[1], attr) | |
if os.path.exists(checkpoint_path_1): | |
files = [ | |
*glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")), | |
*glob.glob(os.path.join(checkpoint_path_1, "*.bin")), | |
] | |
checkpoint_path_1 = files[0] if len(files) > 0 else None | |
if len(cached_folders) < 3: | |
checkpoint_path_2 = None | |
else: | |
checkpoint_path_2 = os.path.join(cached_folders[2], attr) | |
if os.path.exists(checkpoint_path_2): | |
files = [ | |
*glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")), | |
*glob.glob(os.path.join(checkpoint_path_2, "*.bin")), | |
] | |
checkpoint_path_2 = files[0] if len(files) > 0 else None | |
# For an attr if both checkpoint_path_1 and 2 are None, ignore. | |
# If atleast one is present, deal with it according to interp method, of course only if the state_dict keys match. | |
if checkpoint_path_1 is None and checkpoint_path_2 is None: | |
print(f"Skipping {attr}: not present in 2nd or 3d model") | |
continue | |
try: | |
module = getattr(final_pipe, attr) | |
if isinstance(module, bool): # ignore requires_safety_checker boolean | |
continue | |
theta_0 = getattr(module, "state_dict") | |
theta_0 = theta_0() | |
update_theta_0 = getattr(module, "load_state_dict") | |
theta_1 = ( | |
safetensors.torch.load_file(checkpoint_path_1) | |
if (is_safetensors_available() and checkpoint_path_1.endswith(".safetensors")) | |
else torch.load(checkpoint_path_1, map_location="cpu") | |
) | |
theta_2 = None | |
if checkpoint_path_2: | |
theta_2 = ( | |
safetensors.torch.load_file(checkpoint_path_2) | |
if (is_safetensors_available() and checkpoint_path_2.endswith(".safetensors")) | |
else torch.load(checkpoint_path_2, map_location="cpu") | |
) | |
if not theta_0.keys() == theta_1.keys(): | |
print(f"Skipping {attr}: key mismatch") | |
continue | |
if theta_2 and not theta_1.keys() == theta_2.keys(): | |
print(f"Skipping {attr}:y mismatch") | |
except Exception as e: | |
print(f"Skipping {attr} do to an unexpected error: {str(e)}") | |
continue | |
print(f"MERGING {attr}") | |
for key in theta_0.keys(): | |
if theta_2: | |
theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha) | |
else: | |
theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha) | |
del theta_1 | |
del theta_2 | |
update_theta_0(theta_0) | |
del theta_0 | |
return final_pipe | |
def weighted_sum(theta0, theta1, theta2, alpha): | |
return ((1 - alpha) * theta0) + (alpha * theta1) | |
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep) | |
def sigmoid(theta0, theta1, theta2, alpha): | |
alpha = alpha * alpha * (3 - (2 * alpha)) | |
return theta0 + ((theta1 - theta0) * alpha) | |
# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep) | |
def inv_sigmoid(theta0, theta1, theta2, alpha): | |
import math | |
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0) | |
return theta0 + ((theta1 - theta0) * alpha) | |
def add_difference(theta0, theta1, theta2, alpha): | |
return theta0 + (theta1 - theta2) * (1.0 - alpha) | |