Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import DDPMScheduler | |
from .test_schedulers import SchedulerCommonTest | |
class DDPMSchedulerTest(SchedulerCommonTest): | |
scheduler_classes = (DDPMScheduler,) | |
def get_scheduler_config(self, **kwargs): | |
config = { | |
"num_train_timesteps": 1000, | |
"beta_start": 0.0001, | |
"beta_end": 0.02, | |
"beta_schedule": "linear", | |
"variance_type": "fixed_small", | |
"clip_sample": True, | |
} | |
config.update(**kwargs) | |
return config | |
def test_timesteps(self): | |
for timesteps in [1, 5, 100, 1000]: | |
self.check_over_configs(num_train_timesteps=timesteps) | |
def test_betas(self): | |
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): | |
self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
def test_schedules(self): | |
for schedule in ["linear", "squaredcos_cap_v2"]: | |
self.check_over_configs(beta_schedule=schedule) | |
def test_variance_type(self): | |
for variance in ["fixed_small", "fixed_large", "other"]: | |
self.check_over_configs(variance_type=variance) | |
def test_clip_sample(self): | |
for clip_sample in [True, False]: | |
self.check_over_configs(clip_sample=clip_sample) | |
def test_thresholding(self): | |
self.check_over_configs(thresholding=False) | |
for threshold in [0.5, 1.0, 2.0]: | |
for prediction_type in ["epsilon", "sample", "v_prediction"]: | |
self.check_over_configs( | |
thresholding=True, | |
prediction_type=prediction_type, | |
sample_max_value=threshold, | |
) | |
def test_prediction_type(self): | |
for prediction_type in ["epsilon", "sample", "v_prediction"]: | |
self.check_over_configs(prediction_type=prediction_type) | |
def test_time_indices(self): | |
for t in [0, 500, 999]: | |
self.check_over_forward(time_step=t) | |
def test_variance(self): | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 | |
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5 | |
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5 | |
def test_full_loop_no_noise(self): | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config() | |
scheduler = scheduler_class(**scheduler_config) | |
num_trained_timesteps = len(scheduler) | |
model = self.dummy_model() | |
sample = self.dummy_sample_deter | |
generator = torch.manual_seed(0) | |
for t in reversed(range(num_trained_timesteps)): | |
# 1. predict noise residual | |
residual = model(sample, t) | |
# 2. predict previous mean of sample x_t-1 | |
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample | |
# if t > 0: | |
# noise = self.dummy_sample_deter | |
# variance = scheduler.get_variance(t) ** (0.5) * noise | |
# | |
# sample = pred_prev_sample + variance | |
sample = pred_prev_sample | |
result_sum = torch.sum(torch.abs(sample)) | |
result_mean = torch.mean(torch.abs(sample)) | |
assert abs(result_sum.item() - 258.9606) < 1e-2 | |
assert abs(result_mean.item() - 0.3372) < 1e-3 | |
def test_full_loop_with_v_prediction(self): | |
scheduler_class = self.scheduler_classes[0] | |
scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") | |
scheduler = scheduler_class(**scheduler_config) | |
num_trained_timesteps = len(scheduler) | |
model = self.dummy_model() | |
sample = self.dummy_sample_deter | |
generator = torch.manual_seed(0) | |
for t in reversed(range(num_trained_timesteps)): | |
# 1. predict noise residual | |
residual = model(sample, t) | |
# 2. predict previous mean of sample x_t-1 | |
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample | |
# if t > 0: | |
# noise = self.dummy_sample_deter | |
# variance = scheduler.get_variance(t) ** (0.5) * noise | |
# | |
# sample = pred_prev_sample + variance | |
sample = pred_prev_sample | |
result_sum = torch.sum(torch.abs(sample)) | |
result_mean = torch.mean(torch.abs(sample)) | |
assert abs(result_sum.item() - 202.0296) < 1e-2 | |
assert abs(result_mean.item() - 0.2631) < 1e-3 | |