Spaces:
Running
on
Zero
Running
on
Zero
import contextlib | |
import gc | |
import inspect | |
import io | |
import re | |
import tempfile | |
import unittest | |
from typing import Callable, Union | |
import numpy as np | |
import torch | |
import diffusers | |
from diffusers import DiffusionPipeline | |
from diffusers.utils import logging | |
from diffusers.utils.import_utils import is_accelerate_available, is_accelerate_version, is_xformers_available | |
from diffusers.utils.testing_utils import require_torch, torch_device | |
torch.backends.cuda.matmul.allow_tf32 = False | |
def to_np(tensor): | |
if isinstance(tensor, torch.Tensor): | |
tensor = tensor.detach().cpu().numpy() | |
return tensor | |
class PipelineTesterMixin: | |
""" | |
This mixin is designed to be used with unittest.TestCase classes. | |
It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline, | |
equivalence of dict and tuple outputs, etc. | |
""" | |
# Canonical parameters that are passed to `__call__` regardless | |
# of the type of pipeline. They are always optional and have common | |
# sense default values. | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"num_images_per_prompt", | |
"generator", | |
"latents", | |
"output_type", | |
"return_dict", | |
"callback", | |
"callback_steps", | |
] | |
) | |
# set these parameters to False in the child class if the pipeline does not support the corresponding functionality | |
test_attention_slicing = True | |
test_cpu_offload = True | |
test_xformers_attention = True | |
def get_generator(self, seed): | |
device = torch_device if torch_device != "mps" else "cpu" | |
generator = torch.Generator(device).manual_seed(seed) | |
return generator | |
def pipeline_class(self) -> Union[Callable, DiffusionPipeline]: | |
raise NotImplementedError( | |
"You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. " | |
"See existing pipeline tests for reference." | |
) | |
def get_dummy_components(self): | |
raise NotImplementedError( | |
"You need to implement `get_dummy_components(self)` in the child test class. " | |
"See existing pipeline tests for reference." | |
) | |
def get_dummy_inputs(self, device, seed=0): | |
raise NotImplementedError( | |
"You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. " | |
"See existing pipeline tests for reference." | |
) | |
def params(self) -> frozenset: | |
raise NotImplementedError( | |
"You need to set the attribute `params` in the child test class. " | |
"`params` are checked for if all values are present in `__call__`'s signature." | |
" You can set `params` using one of the common set of parameters defined in`pipeline_params.py`" | |
" e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to " | |
"image pipelines, including prompts and prompt embedding overrides." | |
"If your pipeline's set of arguments has minor changes from one of the common sets of arguments, " | |
"do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline " | |
"with non-configurable height and width arguments should set the attribute as " | |
"`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. " | |
"See existing pipeline tests for reference." | |
) | |
def batch_params(self) -> frozenset: | |
raise NotImplementedError( | |
"You need to set the attribute `batch_params` in the child test class. " | |
"`batch_params` are the parameters required to be batched when passed to the pipeline's " | |
"`__call__` method. `pipeline_params.py` provides some common sets of parameters such as " | |
"`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's " | |
"set of batch arguments has minor changes from one of the common sets of batch arguments, " | |
"do not make modifications to the existing common sets of batch arguments. I.e. a text to " | |
"image pipeline `negative_prompt` is not batched should set the attribute as " | |
"`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. " | |
"See existing pipeline tests for reference." | |
) | |
def tearDown(self): | |
# clean up the VRAM after each test in case of CUDA runtime errors | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_save_load_local(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = pipe(**inputs)[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_loaded = pipe_loaded(**inputs)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, 1e-4) | |
def test_pipeline_call_signature(self): | |
self.assertTrue( | |
hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method" | |
) | |
parameters = inspect.signature(self.pipeline_class.__call__).parameters | |
optional_parameters = set() | |
for k, v in parameters.items(): | |
if v.default != inspect._empty: | |
optional_parameters.add(k) | |
parameters = set(parameters.keys()) | |
parameters.remove("self") | |
parameters.discard("kwargs") # kwargs can be added if arguments of pipeline call function are deprecated | |
remaining_required_parameters = set() | |
for param in self.params: | |
if param not in parameters: | |
remaining_required_parameters.add(param) | |
self.assertTrue( | |
len(remaining_required_parameters) == 0, | |
f"Required parameters not present: {remaining_required_parameters}", | |
) | |
remaining_required_optional_parameters = set() | |
for param in self.required_optional_params: | |
if param not in optional_parameters: | |
remaining_required_optional_parameters.add(param) | |
self.assertTrue( | |
len(remaining_required_optional_parameters) == 0, | |
f"Required optional parameters not present: {remaining_required_optional_parameters}", | |
) | |
def test_inference_batch_consistent(self): | |
self._test_inference_batch_consistent() | |
def _test_inference_batch_consistent( | |
self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"] | |
): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
logger = logging.get_logger(pipe.__module__) | |
logger.setLevel(level=diffusers.logging.FATAL) | |
# batchify inputs | |
for batch_size in batch_sizes: | |
batched_inputs = {} | |
for name, value in inputs.items(): | |
if name in self.batch_params: | |
# prompt is string | |
if name == "prompt": | |
len_prompt = len(value) | |
# make unequal batch sizes | |
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
# make last batch super long | |
batched_inputs[name][-1] = 2000 * "very long" | |
# or else we have images | |
else: | |
batched_inputs[name] = batch_size * [value] | |
elif name == "batch_size": | |
batched_inputs[name] = batch_size | |
else: | |
batched_inputs[name] = value | |
for arg in additional_params_copy_to_batched_inputs: | |
batched_inputs[arg] = inputs[arg] | |
batched_inputs["output_type"] = None | |
if self.pipeline_class.__name__ == "DanceDiffusionPipeline": | |
batched_inputs.pop("output_type") | |
output = pipe(**batched_inputs) | |
assert len(output[0]) == batch_size | |
batched_inputs["output_type"] = "np" | |
if self.pipeline_class.__name__ == "DanceDiffusionPipeline": | |
batched_inputs.pop("output_type") | |
output = pipe(**batched_inputs)[0] | |
assert output.shape[0] == batch_size | |
logger.setLevel(level=diffusers.logging.WARNING) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical() | |
def _test_inference_batch_single_identical( | |
self, | |
test_max_difference=None, | |
test_mean_pixel_difference=None, | |
relax_max_difference=False, | |
expected_max_diff=1e-4, | |
additional_params_copy_to_batched_inputs=["num_inference_steps"], | |
): | |
if test_max_difference is None: | |
# TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems | |
# make sure that batched and non-batched is identical | |
test_max_difference = torch_device != "mps" | |
if test_mean_pixel_difference is None: | |
# TODO same as above | |
test_mean_pixel_difference = torch_device != "mps" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
logger = logging.get_logger(pipe.__module__) | |
logger.setLevel(level=diffusers.logging.FATAL) | |
# batchify inputs | |
batched_inputs = {} | |
batch_size = 3 | |
for name, value in inputs.items(): | |
if name in self.batch_params: | |
# prompt is string | |
if name == "prompt": | |
len_prompt = len(value) | |
# make unequal batch sizes | |
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
# make last batch super long | |
batched_inputs[name][-1] = 2000 * "very long" | |
# or else we have images | |
else: | |
batched_inputs[name] = batch_size * [value] | |
elif name == "batch_size": | |
batched_inputs[name] = batch_size | |
elif name == "generator": | |
batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)] | |
else: | |
batched_inputs[name] = value | |
for arg in additional_params_copy_to_batched_inputs: | |
batched_inputs[arg] = inputs[arg] | |
if self.pipeline_class.__name__ != "DanceDiffusionPipeline": | |
batched_inputs["output_type"] = "np" | |
output_batch = pipe(**batched_inputs) | |
assert output_batch[0].shape[0] == batch_size | |
inputs["generator"] = self.get_generator(0) | |
output = pipe(**inputs) | |
logger.setLevel(level=diffusers.logging.WARNING) | |
if test_max_difference: | |
if relax_max_difference: | |
# Taking the median of the largest <n> differences | |
# is resilient to outliers | |
diff = np.abs(output_batch[0][0] - output[0][0]) | |
diff = diff.flatten() | |
diff.sort() | |
max_diff = np.median(diff[-5:]) | |
else: | |
max_diff = np.abs(output_batch[0][0] - output[0][0]).max() | |
assert max_diff < expected_max_diff | |
if test_mean_pixel_difference: | |
assert_mean_pixel_difference(output_batch[0][0], output[0][0]) | |
def test_dict_tuple_outputs_equivalent(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(torch_device))[0] | |
output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_tuple)).max() | |
self.assertLess(max_diff, 1e-4) | |
def test_components_function(self): | |
init_components = self.get_dummy_components() | |
pipe = self.pipeline_class(**init_components) | |
self.assertTrue(hasattr(pipe, "components")) | |
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) | |
def test_float16_inference(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe_fp16 = self.pipeline_class(**components) | |
pipe_fp16.to(torch_device, torch.float16) | |
pipe_fp16.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(torch_device))[0] | |
output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0] | |
max_diff = np.abs(to_np(output) - to_np(output_fp16)).max() | |
self.assertLess(max_diff, 1e-2, "The outputs of the fp16 and fp32 pipelines are too different.") | |
def test_save_load_float16(self): | |
components = self.get_dummy_components() | |
for name, module in components.items(): | |
if hasattr(module, "half"): | |
components[name] = module.to(torch_device).half() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = pipe(**inputs)[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
for name, component in pipe_loaded.components.items(): | |
if hasattr(component, "dtype"): | |
self.assertTrue( | |
component.dtype == torch.float16, | |
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.", | |
) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_loaded = pipe_loaded(**inputs)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, 1e-2, "The output of the fp16 pipeline changed after saving and loading.") | |
def test_save_load_optional_components(self): | |
if not hasattr(self.pipeline_class, "_optional_components"): | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
# set all optional components to None | |
for optional_component in pipe._optional_components: | |
setattr(pipe, optional_component, None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = pipe(**inputs)[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
for optional_component in pipe._optional_components: | |
self.assertTrue( | |
getattr(pipe_loaded, optional_component) is None, | |
f"`{optional_component}` did not stay set to None after loading.", | |
) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_loaded = pipe_loaded(**inputs)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, 1e-4) | |
def test_to_device(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to("cpu") | |
model_devices = [component.device.type for component in components.values() if hasattr(component, "device")] | |
self.assertTrue(all(device == "cpu" for device in model_devices)) | |
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] | |
self.assertTrue(np.isnan(output_cpu).sum() == 0) | |
pipe.to("cuda") | |
model_devices = [component.device.type for component in components.values() if hasattr(component, "device")] | |
self.assertTrue(all(device == "cuda" for device in model_devices)) | |
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] | |
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) | |
def test_to_dtype(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) | |
pipe.to(torch_dtype=torch.float16) | |
model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) | |
def test_attention_slicing_forward_pass(self): | |
self._test_attention_slicing_forward_pass() | |
def _test_attention_slicing_forward_pass( | |
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
): | |
if not self.test_attention_slicing: | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_without_slicing = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=1) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_slicing = pipe(**inputs)[0] | |
if test_max_difference: | |
max_diff = np.abs(to_np(output_with_slicing) - to_np(output_without_slicing)).max() | |
self.assertLess(max_diff, expected_max_diff, "Attention slicing should not affect the inference results") | |
if test_mean_pixel_difference: | |
assert_mean_pixel_difference(output_with_slicing[0], output_without_slicing[0]) | |
def test_cpu_offload_forward_pass(self): | |
if not self.test_cpu_offload: | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_without_offload = pipe(**inputs)[0] | |
pipe.enable_sequential_cpu_offload() | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_offload = pipe(**inputs)[0] | |
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results") | |
def test_xformers_attention_forwardGenerator_pass(self): | |
self._test_xformers_attention_forwardGenerator_pass() | |
def _test_xformers_attention_forwardGenerator_pass(self, test_max_difference=True, expected_max_diff=1e-4): | |
if not self.test_xformers_attention: | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_without_offload = pipe(**inputs)[0] | |
pipe.enable_xformers_memory_efficient_attention() | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_offload = pipe(**inputs)[0] | |
if test_max_difference: | |
max_diff = np.abs(output_with_offload - output_without_offload).max() | |
self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results") | |
assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0]) | |
def test_progress_bar(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
stderr = stderr.getvalue() | |
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img, | |
# so we just match "5" in "#####| 1/5 [00:01<00:00]" | |
max_steps = re.search("/(.*?) ", stderr).group(1) | |
self.assertTrue(max_steps is not None and len(max_steps) > 0) | |
self.assertTrue( | |
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step" | |
) | |
pipe.set_progress_bar_config(disable=True) | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled") | |
def test_num_images_per_prompt(self): | |
sig = inspect.signature(self.pipeline_class.__call__) | |
if "num_images_per_prompt" not in sig.parameters: | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
batch_sizes = [1, 2] | |
num_images_per_prompts = [1, 2] | |
for batch_size in batch_sizes: | |
for num_images_per_prompt in num_images_per_prompts: | |
inputs = self.get_dummy_inputs(torch_device) | |
for key in inputs.keys(): | |
if key in self.batch_params: | |
inputs[key] = batch_size * [inputs[key]] | |
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images | |
assert images.shape[0] == batch_size * num_images_per_prompt | |
# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used. | |
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a | |
# reference image. | |
def assert_mean_pixel_difference(image, expected_image): | |
image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32) | |
expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32) | |
avg_diff = np.abs(image - expected_image).mean() | |
assert avg_diff < 10, f"Error image deviates {avg_diff} pixels on average" | |