Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer | |
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel | |
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( | |
RobertaSeriesConfig, | |
RobertaSeriesModelWithTransformation, | |
) | |
from diffusers.utils import slow, torch_device | |
from diffusers.utils.testing_utils import require_torch_gpu | |
from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ...test_pipelines_common import PipelineTesterMixin | |
torch.backends.cuda.matmul.allow_tf32 = False | |
class AltDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = AltDiffusionPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
# TODO: address the non-deterministic text encoder (fails for save-load tests) | |
# torch.manual_seed(0) | |
# text_encoder_config = RobertaSeriesConfig( | |
# hidden_size=32, | |
# project_dim=32, | |
# intermediate_size=37, | |
# layer_norm_eps=1e-05, | |
# num_attention_heads=4, | |
# num_hidden_layers=5, | |
# vocab_size=5002, | |
# ) | |
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
projection_dim=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=5002, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") | |
tokenizer.model_max_length = 77 | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "numpy", | |
} | |
return inputs | |
def test_alt_diffusion_ddim(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
torch.manual_seed(0) | |
text_encoder_config = RobertaSeriesConfig( | |
hidden_size=32, | |
project_dim=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
vocab_size=5002, | |
) | |
# TODO: remove after fixing the non-deterministic text encoder | |
text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) | |
components["text_encoder"] = text_encoder | |
alt_pipe = AltDiffusionPipeline(**components) | |
alt_pipe = alt_pipe.to(device) | |
alt_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["prompt"] = "A photo of an astronaut" | |
output = alt_pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array( | |
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] | |
) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_alt_diffusion_pndm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) | |
torch.manual_seed(0) | |
text_encoder_config = RobertaSeriesConfig( | |
hidden_size=32, | |
project_dim=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
vocab_size=5002, | |
) | |
# TODO: remove after fixing the non-deterministic text encoder | |
text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) | |
components["text_encoder"] = text_encoder | |
alt_pipe = AltDiffusionPipeline(**components) | |
alt_pipe = alt_pipe.to(device) | |
alt_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = alt_pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array( | |
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] | |
) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
class AltDiffusionPipelineIntegrationTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_alt_diffusion(self): | |
# make sure here that pndm scheduler skips prk | |
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None) | |
alt_pipe = alt_pipe.to(torch_device) | |
alt_pipe.set_progress_bar_config(disable=None) | |
prompt = "A painting of a squirrel eating a burger" | |
generator = torch.manual_seed(0) | |
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np") | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_alt_diffusion_fast_ddim(self): | |
scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler") | |
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None) | |
alt_pipe = alt_pipe.to(torch_device) | |
alt_pipe.set_progress_bar_config(disable=None) | |
prompt = "A painting of a squirrel eating a burger" | |
generator = torch.manual_seed(0) | |
output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy") | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |