Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import warnings | |
from typing import Union | |
import numpy as np | |
import PIL | |
import torch | |
from PIL import Image | |
from .configuration_utils import ConfigMixin, register_to_config | |
from .utils import CONFIG_NAME, PIL_INTERPOLATION | |
class VaeImageProcessor(ConfigMixin): | |
""" | |
Image Processor for VAE | |
Args: | |
do_resize (`bool`, *optional*, defaults to `True`): | |
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. | |
vae_scale_factor (`int`, *optional*, defaults to `8`): | |
VAE scale factor. If `do_resize` is True, the image will be automatically resized to multiples of this | |
factor. | |
resample (`str`, *optional*, defaults to `lanczos`): | |
Resampling filter to use when resizing the image. | |
do_normalize (`bool`, *optional*, defaults to `True`): | |
Whether to normalize the image to [-1,1] | |
""" | |
config_name = CONFIG_NAME | |
def __init__( | |
self, | |
do_resize: bool = True, | |
vae_scale_factor: int = 8, | |
resample: str = "lanczos", | |
do_normalize: bool = True, | |
): | |
super().__init__() | |
def numpy_to_pil(images): | |
""" | |
Convert a numpy image or a batch of images to a PIL image. | |
""" | |
if images.ndim == 3: | |
images = images[None, ...] | |
images = (images * 255).round().astype("uint8") | |
if images.shape[-1] == 1: | |
# special case for grayscale (single channel) images | |
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] | |
else: | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def numpy_to_pt(images): | |
""" | |
Convert a numpy image to a pytorch tensor | |
""" | |
if images.ndim == 3: | |
images = images[..., None] | |
images = torch.from_numpy(images.transpose(0, 3, 1, 2)) | |
return images | |
def pt_to_numpy(images): | |
""" | |
Convert a numpy image to a pytorch tensor | |
""" | |
images = images.cpu().permute(0, 2, 3, 1).float().numpy() | |
return images | |
def normalize(images): | |
""" | |
Normalize an image array to [-1,1] | |
""" | |
return 2.0 * images - 1.0 | |
def resize(self, images: PIL.Image.Image) -> PIL.Image.Image: | |
""" | |
Resize a PIL image. Both height and width will be downscaled to the next integer multiple of `vae_scale_factor` | |
""" | |
w, h = images.size | |
w, h = (x - x % self.vae_scale_factor for x in (w, h)) # resize to integer multiple of vae_scale_factor | |
images = images.resize((w, h), resample=PIL_INTERPOLATION[self.resample]) | |
return images | |
def preprocess( | |
self, | |
image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray], | |
) -> torch.Tensor: | |
""" | |
Preprocess the image input, accepted formats are PIL images, numpy arrays or pytorch tensors" | |
""" | |
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor) | |
if isinstance(image, supported_formats): | |
image = [image] | |
elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)): | |
raise ValueError( | |
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}" | |
) | |
if isinstance(image[0], PIL.Image.Image): | |
if self.do_resize: | |
image = [self.resize(i) for i in image] | |
image = [np.array(i).astype(np.float32) / 255.0 for i in image] | |
image = np.stack(image, axis=0) # to np | |
image = self.numpy_to_pt(image) # to pt | |
elif isinstance(image[0], np.ndarray): | |
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) | |
image = self.numpy_to_pt(image) | |
_, _, height, width = image.shape | |
if self.do_resize and (height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0): | |
raise ValueError( | |
f"Currently we only support resizing for PIL image - please resize your numpy array to be divisible by {self.vae_scale_factor}" | |
f"currently the sizes are {height} and {width}. You can also pass a PIL image instead to use resize option in VAEImageProcessor" | |
) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) | |
_, _, height, width = image.shape | |
if self.do_resize and (height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0): | |
raise ValueError( | |
f"Currently we only support resizing for PIL image - please resize your pytorch tensor to be divisible by {self.vae_scale_factor}" | |
f"currently the sizes are {height} and {width}. You can also pass a PIL image instead to use resize option in VAEImageProcessor" | |
) | |
# expected range [0,1], normalize to [-1,1] | |
do_normalize = self.do_normalize | |
if image.min() < 0: | |
warnings.warn( | |
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] " | |
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]", | |
FutureWarning, | |
) | |
do_normalize = False | |
if do_normalize: | |
image = self.normalize(image) | |
return image | |
def postprocess( | |
self, | |
image, | |
output_type: str = "pil", | |
): | |
if isinstance(image, torch.Tensor) and output_type == "pt": | |
return image | |
image = self.pt_to_numpy(image) | |
if output_type == "np": | |
return image | |
elif output_type == "pil": | |
return self.numpy_to_pil(image) | |
else: | |
raise ValueError(f"Unsupported output_type {output_type}.") | |