Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import torch | |
from torchvision.datasets.utils import download_url | |
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, Transformer2DModel | |
pretrained_models = {512: "DiT-XL-2-512x512.pt", 256: "DiT-XL-2-256x256.pt"} | |
def download_model(model_name): | |
""" | |
Downloads a pre-trained DiT model from the web. | |
""" | |
local_path = f"pretrained_models/{model_name}" | |
if not os.path.isfile(local_path): | |
os.makedirs("pretrained_models", exist_ok=True) | |
web_path = f"https://dl.fbaipublicfiles.com/DiT/models/{model_name}" | |
download_url(web_path, "pretrained_models") | |
model = torch.load(local_path, map_location=lambda storage, loc: storage) | |
return model | |
def main(args): | |
state_dict = download_model(pretrained_models[args.image_size]) | |
state_dict["pos_embed.proj.weight"] = state_dict["x_embedder.proj.weight"] | |
state_dict["pos_embed.proj.bias"] = state_dict["x_embedder.proj.bias"] | |
state_dict.pop("x_embedder.proj.weight") | |
state_dict.pop("x_embedder.proj.bias") | |
for depth in range(28): | |
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_1.weight"] = state_dict[ | |
"t_embedder.mlp.0.weight" | |
] | |
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_1.bias"] = state_dict[ | |
"t_embedder.mlp.0.bias" | |
] | |
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_2.weight"] = state_dict[ | |
"t_embedder.mlp.2.weight" | |
] | |
state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_2.bias"] = state_dict[ | |
"t_embedder.mlp.2.bias" | |
] | |
state_dict[f"transformer_blocks.{depth}.norm1.emb.class_embedder.embedding_table.weight"] = state_dict[ | |
"y_embedder.embedding_table.weight" | |
] | |
state_dict[f"transformer_blocks.{depth}.norm1.linear.weight"] = state_dict[ | |
f"blocks.{depth}.adaLN_modulation.1.weight" | |
] | |
state_dict[f"transformer_blocks.{depth}.norm1.linear.bias"] = state_dict[ | |
f"blocks.{depth}.adaLN_modulation.1.bias" | |
] | |
q, k, v = torch.chunk(state_dict[f"blocks.{depth}.attn.qkv.weight"], 3, dim=0) | |
q_bias, k_bias, v_bias = torch.chunk(state_dict[f"blocks.{depth}.attn.qkv.bias"], 3, dim=0) | |
state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q | |
state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias | |
state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k | |
state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias | |
state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v | |
state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias | |
state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict[ | |
f"blocks.{depth}.attn.proj.weight" | |
] | |
state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict[f"blocks.{depth}.attn.proj.bias"] | |
state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict[f"blocks.{depth}.mlp.fc1.weight"] | |
state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict[f"blocks.{depth}.mlp.fc1.bias"] | |
state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict[f"blocks.{depth}.mlp.fc2.weight"] | |
state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict[f"blocks.{depth}.mlp.fc2.bias"] | |
state_dict.pop(f"blocks.{depth}.attn.qkv.weight") | |
state_dict.pop(f"blocks.{depth}.attn.qkv.bias") | |
state_dict.pop(f"blocks.{depth}.attn.proj.weight") | |
state_dict.pop(f"blocks.{depth}.attn.proj.bias") | |
state_dict.pop(f"blocks.{depth}.mlp.fc1.weight") | |
state_dict.pop(f"blocks.{depth}.mlp.fc1.bias") | |
state_dict.pop(f"blocks.{depth}.mlp.fc2.weight") | |
state_dict.pop(f"blocks.{depth}.mlp.fc2.bias") | |
state_dict.pop(f"blocks.{depth}.adaLN_modulation.1.weight") | |
state_dict.pop(f"blocks.{depth}.adaLN_modulation.1.bias") | |
state_dict.pop("t_embedder.mlp.0.weight") | |
state_dict.pop("t_embedder.mlp.0.bias") | |
state_dict.pop("t_embedder.mlp.2.weight") | |
state_dict.pop("t_embedder.mlp.2.bias") | |
state_dict.pop("y_embedder.embedding_table.weight") | |
state_dict["proj_out_1.weight"] = state_dict["final_layer.adaLN_modulation.1.weight"] | |
state_dict["proj_out_1.bias"] = state_dict["final_layer.adaLN_modulation.1.bias"] | |
state_dict["proj_out_2.weight"] = state_dict["final_layer.linear.weight"] | |
state_dict["proj_out_2.bias"] = state_dict["final_layer.linear.bias"] | |
state_dict.pop("final_layer.linear.weight") | |
state_dict.pop("final_layer.linear.bias") | |
state_dict.pop("final_layer.adaLN_modulation.1.weight") | |
state_dict.pop("final_layer.adaLN_modulation.1.bias") | |
# DiT XL/2 | |
transformer = Transformer2DModel( | |
sample_size=args.image_size // 8, | |
num_layers=28, | |
attention_head_dim=72, | |
in_channels=4, | |
out_channels=8, | |
patch_size=2, | |
attention_bias=True, | |
num_attention_heads=16, | |
activation_fn="gelu-approximate", | |
num_embeds_ada_norm=1000, | |
norm_type="ada_norm_zero", | |
norm_elementwise_affine=False, | |
) | |
transformer.load_state_dict(state_dict, strict=True) | |
scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_schedule="linear", | |
prediction_type="epsilon", | |
clip_sample=False, | |
) | |
vae = AutoencoderKL.from_pretrained(args.vae_model) | |
pipeline = DiTPipeline(transformer=transformer, vae=vae, scheduler=scheduler) | |
if args.save: | |
pipeline.save_pretrained(args.checkpoint_path) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--image_size", | |
default=256, | |
type=int, | |
required=False, | |
help="Image size of pretrained model, either 256 or 512.", | |
) | |
parser.add_argument( | |
"--vae_model", | |
default="stabilityai/sd-vae-ft-ema", | |
type=str, | |
required=False, | |
help="Path to pretrained VAE model, either stabilityai/sd-vae-ft-mse or stabilityai/sd-vae-ft-ema.", | |
) | |
parser.add_argument( | |
"--save", default=True, type=bool, required=False, help="Whether to save the converted pipeline or not." | |
) | |
parser.add_argument( | |
"--checkpoint_path", default=None, type=str, required=True, help="Path to the output pipeline." | |
) | |
args = parser.parse_args() | |
main(args) | |