Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel | |
from diffusers.utils.testing_utils import require_torch_gpu, slow, torch_device | |
from ...pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS | |
from ...test_pipelines_common import PipelineTesterMixin | |
torch.backends.cuda.matmul.allow_tf32 = False | |
class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = DDIMPipeline | |
params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS | |
required_optional_params = PipelineTesterMixin.required_optional_params - { | |
"num_images_per_prompt", | |
"latents", | |
"callback", | |
"callback_steps", | |
} | |
batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS | |
test_cpu_offload = False | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=("DownBlock2D", "AttnDownBlock2D"), | |
up_block_types=("AttnUpBlock2D", "UpBlock2D"), | |
) | |
scheduler = DDIMScheduler() | |
components = {"unet": unet, "scheduler": scheduler} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"batch_size": 1, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"output_type": "numpy", | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
self.assertEqual(image.shape, (1, 32, 32, 3)) | |
expected_slice = np.array( | |
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] | |
) | |
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
self.assertLessEqual(max_diff, 1e-3) | |
class DDIMPipelineIntegrationTests(unittest.TestCase): | |
def test_inference_cifar10(self): | |
model_id = "google/ddpm-cifar10-32" | |
unet = UNet2DModel.from_pretrained(model_id) | |
scheduler = DDIMScheduler() | |
ddim = DDIMPipeline(unet=unet, scheduler=scheduler) | |
ddim.to(torch_device) | |
ddim.set_progress_bar_config(disable=None) | |
generator = torch.manual_seed(0) | |
image = ddim(generator=generator, eta=0.0, output_type="numpy").images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_inference_ema_bedroom(self): | |
model_id = "google/ddpm-ema-bedroom-256" | |
unet = UNet2DModel.from_pretrained(model_id) | |
scheduler = DDIMScheduler.from_pretrained(model_id) | |
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler) | |
ddpm.to(torch_device) | |
ddpm.set_progress_bar_config(disable=None) | |
generator = torch.manual_seed(0) | |
image = ddpm(generator=generator, output_type="numpy").images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 256, 256, 3) | |
expected_slice = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |