Spaces:
Running
on
A10G
Running
on
A10G
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
from diffusers.utils import is_flax_available | |
from diffusers.utils.testing_utils import require_flax, slow | |
if is_flax_available(): | |
import jax | |
import jax.numpy as jnp | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
from jax import pmap | |
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline | |
class DownloadTests(unittest.TestCase): | |
def test_download_only_pytorch(self): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
# pipeline has Flax weights | |
_ = FlaxDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname | |
) | |
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))] | |
files = [item for sublist in all_root_files for item in sublist] | |
# None of the downloaded files should be a PyTorch file even if we have some here: | |
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin | |
assert not any(f.endswith(".bin") for f in files) | |
class FlaxPipelineTests(unittest.TestCase): | |
def test_dummy_all_tpus(self): | |
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( | |
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None | |
) | |
prompt = ( | |
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" | |
" field, close up, split lighting, cinematic" | |
) | |
prng_seed = jax.random.PRNGKey(0) | |
num_inference_steps = 4 | |
num_samples = jax.device_count() | |
prompt = num_samples * [prompt] | |
prompt_ids = pipeline.prepare_inputs(prompt) | |
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,)) | |
# shard inputs and rng | |
params = replicate(params) | |
prng_seed = jax.random.split(prng_seed, num_samples) | |
prompt_ids = shard(prompt_ids) | |
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images | |
assert images.shape == (num_samples, 1, 64, 64, 3) | |
if jax.device_count() == 8: | |
assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 3.1111548) < 1e-3 | |
assert np.abs(np.abs(images, dtype=np.float32).sum() - 199746.95) < 5e-1 | |
images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) | |
assert len(images_pil) == num_samples | |
def test_stable_diffusion_v1_4(self): | |
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", revision="flax", safety_checker=None | |
) | |
prompt = ( | |
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" | |
" field, close up, split lighting, cinematic" | |
) | |
prng_seed = jax.random.PRNGKey(0) | |
num_inference_steps = 50 | |
num_samples = jax.device_count() | |
prompt = num_samples * [prompt] | |
prompt_ids = pipeline.prepare_inputs(prompt) | |
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,)) | |
# shard inputs and rng | |
params = replicate(params) | |
prng_seed = jax.random.split(prng_seed, num_samples) | |
prompt_ids = shard(prompt_ids) | |
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images | |
assert images.shape == (num_samples, 1, 512, 512, 3) | |
if jax.device_count() == 8: | |
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3 | |
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1 | |
def test_stable_diffusion_v1_4_bfloat_16(self): | |
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, safety_checker=None | |
) | |
prompt = ( | |
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" | |
" field, close up, split lighting, cinematic" | |
) | |
prng_seed = jax.random.PRNGKey(0) | |
num_inference_steps = 50 | |
num_samples = jax.device_count() | |
prompt = num_samples * [prompt] | |
prompt_ids = pipeline.prepare_inputs(prompt) | |
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,)) | |
# shard inputs and rng | |
params = replicate(params) | |
prng_seed = jax.random.split(prng_seed, num_samples) | |
prompt_ids = shard(prompt_ids) | |
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images | |
assert images.shape == (num_samples, 1, 512, 512, 3) | |
if jax.device_count() == 8: | |
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3 | |
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1 | |
def test_stable_diffusion_v1_4_bfloat_16_with_safety(self): | |
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16 | |
) | |
prompt = ( | |
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" | |
" field, close up, split lighting, cinematic" | |
) | |
prng_seed = jax.random.PRNGKey(0) | |
num_inference_steps = 50 | |
num_samples = jax.device_count() | |
prompt = num_samples * [prompt] | |
prompt_ids = pipeline.prepare_inputs(prompt) | |
# shard inputs and rng | |
params = replicate(params) | |
prng_seed = jax.random.split(prng_seed, num_samples) | |
prompt_ids = shard(prompt_ids) | |
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images | |
assert images.shape == (num_samples, 1, 512, 512, 3) | |
if jax.device_count() == 8: | |
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3 | |
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1 | |
def test_stable_diffusion_v1_4_bfloat_16_ddim(self): | |
scheduler = FlaxDDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
revision="bf16", | |
dtype=jnp.bfloat16, | |
scheduler=scheduler, | |
safety_checker=None, | |
) | |
scheduler_state = scheduler.create_state() | |
params["scheduler"] = scheduler_state | |
prompt = ( | |
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" | |
" field, close up, split lighting, cinematic" | |
) | |
prng_seed = jax.random.PRNGKey(0) | |
num_inference_steps = 50 | |
num_samples = jax.device_count() | |
prompt = num_samples * [prompt] | |
prompt_ids = pipeline.prepare_inputs(prompt) | |
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,)) | |
# shard inputs and rng | |
params = replicate(params) | |
prng_seed = jax.random.split(prng_seed, num_samples) | |
prompt_ids = shard(prompt_ids) | |
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images | |
assert images.shape == (num_samples, 1, 512, 512, 3) | |
if jax.device_count() == 8: | |
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3 | |
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1 | |