Spaces:
Running
on
L4
Running
on
L4
import argparse | |
import hashlib | |
import logging | |
import math | |
import os | |
from pathlib import Path | |
from typing import Optional | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
import optax | |
import torch | |
import torch.utils.checkpoint | |
import transformers | |
from flax import jax_utils | |
from flax.training import train_state | |
from flax.training.common_utils import shard | |
from huggingface_hub import HfFolder, Repository, create_repo, whoami | |
from jax.experimental.compilation_cache import compilation_cache as cc | |
from PIL import Image | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed | |
from diffusers import ( | |
FlaxAutoencoderKL, | |
FlaxDDPMScheduler, | |
FlaxPNDMScheduler, | |
FlaxStableDiffusionPipeline, | |
FlaxUNet2DConditionModel, | |
) | |
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker | |
from diffusers.utils import check_min_version | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.15.0.dev0") | |
# Cache compiled models across invocations of this script. | |
cc.initialize_cache(os.path.expanduser("~/.cache/jax/compilation_cache")) | |
logger = logging.getLogger(__name__) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--pretrained_vae_name_or_path", | |
type=str, | |
default=None, | |
help="Path to pretrained vae or vae identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
type=str, | |
default=None, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--instance_data_dir", | |
type=str, | |
default=None, | |
required=True, | |
help="A folder containing the training data of instance images.", | |
) | |
parser.add_argument( | |
"--class_data_dir", | |
type=str, | |
default=None, | |
required=False, | |
help="A folder containing the training data of class images.", | |
) | |
parser.add_argument( | |
"--instance_prompt", | |
type=str, | |
default=None, | |
help="The prompt with identifier specifying the instance", | |
) | |
parser.add_argument( | |
"--class_prompt", | |
type=str, | |
default=None, | |
help="The prompt to specify images in the same class as provided instance images.", | |
) | |
parser.add_argument( | |
"--with_prior_preservation", | |
default=False, | |
action="store_true", | |
help="Flag to add prior preservation loss.", | |
) | |
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") | |
parser.add_argument( | |
"--num_class_images", | |
type=int, | |
default=100, | |
help=( | |
"Minimal class images for prior preservation loss. If there are not enough images already present in" | |
" class_data_dir, additional images will be sampled with class_prompt." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="text-inversion-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--save_steps", type=int, default=None, help="Save a checkpoint every X steps.") | |
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--center_crop", | |
default=False, | |
action="store_true", | |
help=( | |
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
" cropped. The images will be resized to the resolution first before cropping." | |
), | |
) | |
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument( | |
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=1) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=5e-6, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default="no", | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose" | |
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | |
"and an Nvidia Ampere GPU." | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
if args.instance_data_dir is None: | |
raise ValueError("You must specify a train data directory.") | |
if args.with_prior_preservation: | |
if args.class_data_dir is None: | |
raise ValueError("You must specify a data directory for class images.") | |
if args.class_prompt is None: | |
raise ValueError("You must specify prompt for class images.") | |
return args | |
class DreamBoothDataset(Dataset): | |
""" | |
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. | |
It pre-processes the images and the tokenizes prompts. | |
""" | |
def __init__( | |
self, | |
instance_data_root, | |
instance_prompt, | |
tokenizer, | |
class_data_root=None, | |
class_prompt=None, | |
class_num=None, | |
size=512, | |
center_crop=False, | |
): | |
self.size = size | |
self.center_crop = center_crop | |
self.tokenizer = tokenizer | |
self.instance_data_root = Path(instance_data_root) | |
if not self.instance_data_root.exists(): | |
raise ValueError("Instance images root doesn't exists.") | |
self.instance_images_path = list(Path(instance_data_root).iterdir()) | |
self.num_instance_images = len(self.instance_images_path) | |
self.instance_prompt = instance_prompt | |
self._length = self.num_instance_images | |
if class_data_root is not None: | |
self.class_data_root = Path(class_data_root) | |
self.class_data_root.mkdir(parents=True, exist_ok=True) | |
self.class_images_path = list(self.class_data_root.iterdir()) | |
if class_num is not None: | |
self.num_class_images = min(len(self.class_images_path), class_num) | |
else: | |
self.num_class_images = len(self.class_images_path) | |
self._length = max(self.num_class_images, self.num_instance_images) | |
self.class_prompt = class_prompt | |
else: | |
self.class_data_root = None | |
self.image_transforms = transforms.Compose( | |
[ | |
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
def __len__(self): | |
return self._length | |
def __getitem__(self, index): | |
example = {} | |
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) | |
if not instance_image.mode == "RGB": | |
instance_image = instance_image.convert("RGB") | |
example["instance_images"] = self.image_transforms(instance_image) | |
example["instance_prompt_ids"] = self.tokenizer( | |
self.instance_prompt, | |
padding="do_not_pad", | |
truncation=True, | |
max_length=self.tokenizer.model_max_length, | |
).input_ids | |
if self.class_data_root: | |
class_image = Image.open(self.class_images_path[index % self.num_class_images]) | |
if not class_image.mode == "RGB": | |
class_image = class_image.convert("RGB") | |
example["class_images"] = self.image_transforms(class_image) | |
example["class_prompt_ids"] = self.tokenizer( | |
self.class_prompt, | |
padding="do_not_pad", | |
truncation=True, | |
max_length=self.tokenizer.model_max_length, | |
).input_ids | |
return example | |
class PromptDataset(Dataset): | |
"A simple dataset to prepare the prompts to generate class images on multiple GPUs." | |
def __init__(self, prompt, num_samples): | |
self.prompt = prompt | |
self.num_samples = num_samples | |
def __len__(self): | |
return self.num_samples | |
def __getitem__(self, index): | |
example = {} | |
example["prompt"] = self.prompt | |
example["index"] = index | |
return example | |
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): | |
if token is None: | |
token = HfFolder.get_token() | |
if organization is None: | |
username = whoami(token)["name"] | |
return f"{username}/{model_id}" | |
else: | |
return f"{organization}/{model_id}" | |
def get_params_to_save(params): | |
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) | |
def main(): | |
args = parse_args() | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
# Setup logging, we only want one process per machine to log things on the screen. | |
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
if jax.process_index() == 0: | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
if args.seed is not None: | |
set_seed(args.seed) | |
rng = jax.random.PRNGKey(args.seed) | |
if args.with_prior_preservation: | |
class_images_dir = Path(args.class_data_dir) | |
if not class_images_dir.exists(): | |
class_images_dir.mkdir(parents=True) | |
cur_class_images = len(list(class_images_dir.iterdir())) | |
if cur_class_images < args.num_class_images: | |
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, safety_checker=None, revision=args.revision | |
) | |
pipeline.set_progress_bar_config(disable=True) | |
num_new_images = args.num_class_images - cur_class_images | |
logger.info(f"Number of class images to sample: {num_new_images}.") | |
sample_dataset = PromptDataset(args.class_prompt, num_new_images) | |
total_sample_batch_size = args.sample_batch_size * jax.local_device_count() | |
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=total_sample_batch_size) | |
for example in tqdm( | |
sample_dataloader, desc="Generating class images", disable=not jax.process_index() == 0 | |
): | |
prompt_ids = pipeline.prepare_inputs(example["prompt"]) | |
prompt_ids = shard(prompt_ids) | |
p_params = jax_utils.replicate(params) | |
rng = jax.random.split(rng)[0] | |
sample_rng = jax.random.split(rng, jax.device_count()) | |
images = pipeline(prompt_ids, p_params, sample_rng, jit=True).images | |
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) | |
images = pipeline.numpy_to_pil(np.array(images)) | |
for i, image in enumerate(images): | |
hash_image = hashlib.sha1(image.tobytes()).hexdigest() | |
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" | |
image.save(image_filename) | |
del pipeline | |
# Handle the repository creation | |
if jax.process_index() == 0: | |
if args.push_to_hub: | |
if args.hub_model_id is None: | |
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) | |
else: | |
repo_name = args.hub_model_id | |
create_repo(repo_name, exist_ok=True, token=args.hub_token) | |
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token) | |
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: | |
if "step_*" not in gitignore: | |
gitignore.write("step_*\n") | |
if "epoch_*" not in gitignore: | |
gitignore.write("epoch_*\n") | |
elif args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
# Load the tokenizer and add the placeholder token as a additional special token | |
if args.tokenizer_name: | |
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | |
elif args.pretrained_model_name_or_path: | |
tokenizer = CLIPTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision | |
) | |
else: | |
raise NotImplementedError("No tokenizer specified!") | |
train_dataset = DreamBoothDataset( | |
instance_data_root=args.instance_data_dir, | |
instance_prompt=args.instance_prompt, | |
class_data_root=args.class_data_dir if args.with_prior_preservation else None, | |
class_prompt=args.class_prompt, | |
class_num=args.num_class_images, | |
tokenizer=tokenizer, | |
size=args.resolution, | |
center_crop=args.center_crop, | |
) | |
def collate_fn(examples): | |
input_ids = [example["instance_prompt_ids"] for example in examples] | |
pixel_values = [example["instance_images"] for example in examples] | |
# Concat class and instance examples for prior preservation. | |
# We do this to avoid doing two forward passes. | |
if args.with_prior_preservation: | |
input_ids += [example["class_prompt_ids"] for example in examples] | |
pixel_values += [example["class_images"] for example in examples] | |
pixel_values = torch.stack(pixel_values) | |
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
input_ids = tokenizer.pad( | |
{"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt" | |
).input_ids | |
batch = { | |
"input_ids": input_ids, | |
"pixel_values": pixel_values, | |
} | |
batch = {k: v.numpy() for k, v in batch.items()} | |
return batch | |
total_train_batch_size = args.train_batch_size * jax.local_device_count() | |
if len(train_dataset) < total_train_batch_size: | |
raise ValueError( | |
f"Training batch size is {total_train_batch_size}, but your dataset only contains" | |
f" {len(train_dataset)} images. Please, use a larger dataset or reduce the effective batch size. Note that" | |
f" there are {jax.local_device_count()} parallel devices, so your batch size can't be smaller than that." | |
) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, batch_size=total_train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True | |
) | |
weight_dtype = jnp.float32 | |
if args.mixed_precision == "fp16": | |
weight_dtype = jnp.float16 | |
elif args.mixed_precision == "bf16": | |
weight_dtype = jnp.bfloat16 | |
if args.pretrained_vae_name_or_path: | |
# TODO(patil-suraj): Upload flax weights for the VAE | |
vae_arg, vae_kwargs = (args.pretrained_vae_name_or_path, {"from_pt": True}) | |
else: | |
vae_arg, vae_kwargs = (args.pretrained_model_name_or_path, {"subfolder": "vae", "revision": args.revision}) | |
# Load models and create wrapper for stable diffusion | |
text_encoder = FlaxCLIPTextModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", dtype=weight_dtype, revision=args.revision | |
) | |
vae, vae_params = FlaxAutoencoderKL.from_pretrained( | |
vae_arg, | |
dtype=weight_dtype, | |
**vae_kwargs, | |
) | |
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="unet", dtype=weight_dtype, revision=args.revision | |
) | |
# Optimization | |
if args.scale_lr: | |
args.learning_rate = args.learning_rate * total_train_batch_size | |
constant_scheduler = optax.constant_schedule(args.learning_rate) | |
adamw = optax.adamw( | |
learning_rate=constant_scheduler, | |
b1=args.adam_beta1, | |
b2=args.adam_beta2, | |
eps=args.adam_epsilon, | |
weight_decay=args.adam_weight_decay, | |
) | |
optimizer = optax.chain( | |
optax.clip_by_global_norm(args.max_grad_norm), | |
adamw, | |
) | |
unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer) | |
text_encoder_state = train_state.TrainState.create( | |
apply_fn=text_encoder.__call__, params=text_encoder.params, tx=optimizer | |
) | |
noise_scheduler = FlaxDDPMScheduler( | |
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000 | |
) | |
noise_scheduler_state = noise_scheduler.create_state() | |
# Initialize our training | |
train_rngs = jax.random.split(rng, jax.local_device_count()) | |
def train_step(unet_state, text_encoder_state, vae_params, batch, train_rng): | |
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3) | |
if args.train_text_encoder: | |
params = {"text_encoder": text_encoder_state.params, "unet": unet_state.params} | |
else: | |
params = {"unet": unet_state.params} | |
def compute_loss(params): | |
# Convert images to latent space | |
vae_outputs = vae.apply( | |
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode | |
) | |
latents = vae_outputs.latent_dist.sample(sample_rng) | |
# (NHWC) -> (NCHW) | |
latents = jnp.transpose(latents, (0, 3, 1, 2)) | |
latents = latents * vae.config.scaling_factor | |
# Sample noise that we'll add to the latents | |
noise_rng, timestep_rng = jax.random.split(sample_rng) | |
noise = jax.random.normal(noise_rng, latents.shape) | |
# Sample a random timestep for each image | |
bsz = latents.shape[0] | |
timesteps = jax.random.randint( | |
timestep_rng, | |
(bsz,), | |
0, | |
noise_scheduler.config.num_train_timesteps, | |
) | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) | |
# Get the text embedding for conditioning | |
if args.train_text_encoder: | |
encoder_hidden_states = text_encoder_state.apply_fn( | |
batch["input_ids"], params=params["text_encoder"], dropout_rng=dropout_rng, train=True | |
)[0] | |
else: | |
encoder_hidden_states = text_encoder( | |
batch["input_ids"], params=text_encoder_state.params, train=False | |
)[0] | |
# Predict the noise residual | |
model_pred = unet.apply( | |
{"params": params["unet"]}, noisy_latents, timesteps, encoder_hidden_states, train=True | |
).sample | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
if args.with_prior_preservation: | |
# Chunk the noise and noise_pred into two parts and compute the loss on each part separately. | |
model_pred, model_pred_prior = jnp.split(model_pred, 2, axis=0) | |
target, target_prior = jnp.split(target, 2, axis=0) | |
# Compute instance loss | |
loss = (target - model_pred) ** 2 | |
loss = loss.mean() | |
# Compute prior loss | |
prior_loss = (target_prior - model_pred_prior) ** 2 | |
prior_loss = prior_loss.mean() | |
# Add the prior loss to the instance loss. | |
loss = loss + args.prior_loss_weight * prior_loss | |
else: | |
loss = (target - model_pred) ** 2 | |
loss = loss.mean() | |
return loss | |
grad_fn = jax.value_and_grad(compute_loss) | |
loss, grad = grad_fn(params) | |
grad = jax.lax.pmean(grad, "batch") | |
new_unet_state = unet_state.apply_gradients(grads=grad["unet"]) | |
if args.train_text_encoder: | |
new_text_encoder_state = text_encoder_state.apply_gradients(grads=grad["text_encoder"]) | |
else: | |
new_text_encoder_state = text_encoder_state | |
metrics = {"loss": loss} | |
metrics = jax.lax.pmean(metrics, axis_name="batch") | |
return new_unet_state, new_text_encoder_state, metrics, new_train_rng | |
# Create parallel version of the train step | |
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, 1)) | |
# Replicate the train state on each device | |
unet_state = jax_utils.replicate(unet_state) | |
text_encoder_state = jax_utils.replicate(text_encoder_state) | |
vae_params = jax_utils.replicate(vae_params) | |
# Train! | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader)) | |
# Scheduler and math around the number of training steps. | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
def checkpoint(step=None): | |
# Create the pipeline using the trained modules and save it. | |
scheduler, _ = FlaxPNDMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler") | |
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained( | |
"CompVis/stable-diffusion-safety-checker", from_pt=True | |
) | |
pipeline = FlaxStableDiffusionPipeline( | |
text_encoder=text_encoder, | |
vae=vae, | |
unet=unet, | |
tokenizer=tokenizer, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"), | |
) | |
outdir = os.path.join(args.output_dir, str(step)) if step else args.output_dir | |
pipeline.save_pretrained( | |
outdir, | |
params={ | |
"text_encoder": get_params_to_save(text_encoder_state.params), | |
"vae": get_params_to_save(vae_params), | |
"unet": get_params_to_save(unet_state.params), | |
"safety_checker": safety_checker.params, | |
}, | |
) | |
if args.push_to_hub: | |
message = f"checkpoint-{step}" if step is not None else "End of training" | |
repo.push_to_hub(commit_message=message, blocking=False, auto_lfs_prune=True) | |
global_step = 0 | |
epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0) | |
for epoch in epochs: | |
# ======================== Training ================================ | |
train_metrics = [] | |
steps_per_epoch = len(train_dataset) // total_train_batch_size | |
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) | |
# train | |
for batch in train_dataloader: | |
batch = shard(batch) | |
unet_state, text_encoder_state, train_metric, train_rngs = p_train_step( | |
unet_state, text_encoder_state, vae_params, batch, train_rngs | |
) | |
train_metrics.append(train_metric) | |
train_step_progress_bar.update(jax.local_device_count()) | |
global_step += 1 | |
if jax.process_index() == 0 and args.save_steps and global_step % args.save_steps == 0: | |
checkpoint(global_step) | |
if global_step >= args.max_train_steps: | |
break | |
train_metric = jax_utils.unreplicate(train_metric) | |
train_step_progress_bar.close() | |
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") | |
if jax.process_index() == 0: | |
checkpoint() | |
if __name__ == "__main__": | |
main() | |