Spaces:
Sleeping
Sleeping
import argparse | |
import json | |
import torch | |
from diffusers import AutoencoderKL, DDPMPipeline, DDPMScheduler, UNet2DModel, VQModel | |
def shave_segments(path, n_shave_prefix_segments=1): | |
""" | |
Removes segments. Positive values shave the first segments, negative shave the last segments. | |
""" | |
if n_shave_prefix_segments >= 0: | |
return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
else: | |
return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
new_item = new_item.replace("block.", "resnets.") | |
new_item = new_item.replace("conv_shorcut", "conv1") | |
new_item = new_item.replace("in_shortcut", "conv_shortcut") | |
new_item = new_item.replace("temb_proj", "time_emb_proj") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def renew_attention_paths(old_list, n_shave_prefix_segments=0, in_mid=False): | |
mapping = [] | |
for old_item in old_list: | |
new_item = old_item | |
# In `model.mid`, the layer is called `attn`. | |
if not in_mid: | |
new_item = new_item.replace("attn", "attentions") | |
new_item = new_item.replace(".k.", ".key.") | |
new_item = new_item.replace(".v.", ".value.") | |
new_item = new_item.replace(".q.", ".query.") | |
new_item = new_item.replace("proj_out", "proj_attn") | |
new_item = new_item.replace("norm", "group_norm") | |
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
mapping.append({"old": old_item, "new": new_item}) | |
return mapping | |
def assign_to_checkpoint( | |
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None | |
): | |
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
if attention_paths_to_split is not None: | |
if config is None: | |
raise ValueError("Please specify the config if setting 'attention_paths_to_split' to 'True'.") | |
for path, path_map in attention_paths_to_split.items(): | |
old_tensor = old_checkpoint[path] | |
channels = old_tensor.shape[0] // 3 | |
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
num_heads = old_tensor.shape[0] // config.get("num_head_channels", 1) // 3 | |
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
checkpoint[path_map["query"]] = query.reshape(target_shape).squeeze() | |
checkpoint[path_map["key"]] = key.reshape(target_shape).squeeze() | |
checkpoint[path_map["value"]] = value.reshape(target_shape).squeeze() | |
for path in paths: | |
new_path = path["new"] | |
if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
continue | |
new_path = new_path.replace("down.", "down_blocks.") | |
new_path = new_path.replace("up.", "up_blocks.") | |
if additional_replacements is not None: | |
for replacement in additional_replacements: | |
new_path = new_path.replace(replacement["old"], replacement["new"]) | |
if "attentions" in new_path: | |
checkpoint[new_path] = old_checkpoint[path["old"]].squeeze() | |
else: | |
checkpoint[new_path] = old_checkpoint[path["old"]] | |
def convert_ddpm_checkpoint(checkpoint, config): | |
""" | |
Takes a state dict and a config, and returns a converted checkpoint. | |
""" | |
new_checkpoint = {} | |
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["temb.dense.0.weight"] | |
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["temb.dense.0.bias"] | |
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["temb.dense.1.weight"] | |
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["temb.dense.1.bias"] | |
new_checkpoint["conv_norm_out.weight"] = checkpoint["norm_out.weight"] | |
new_checkpoint["conv_norm_out.bias"] = checkpoint["norm_out.bias"] | |
new_checkpoint["conv_in.weight"] = checkpoint["conv_in.weight"] | |
new_checkpoint["conv_in.bias"] = checkpoint["conv_in.bias"] | |
new_checkpoint["conv_out.weight"] = checkpoint["conv_out.weight"] | |
new_checkpoint["conv_out.bias"] = checkpoint["conv_out.bias"] | |
num_down_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "down" in layer}) | |
down_blocks = { | |
layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
} | |
num_up_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "up" in layer}) | |
up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} | |
for i in range(num_down_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
if any("downsample" in layer for layer in down_blocks[i]): | |
new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[ | |
f"down.{i}.downsample.op.weight" | |
] | |
new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[f"down.{i}.downsample.op.bias"] | |
# new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.weight'] = checkpoint[f'down.{i}.downsample.conv.weight'] | |
# new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.bias'] = checkpoint[f'down.{i}.downsample.conv.bias'] | |
if any("block" in layer for layer in down_blocks[i]): | |
num_blocks = len( | |
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "block" in layer} | |
) | |
blocks = { | |
layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key] | |
for layer_id in range(num_blocks) | |
} | |
if num_blocks > 0: | |
for j in range(config["layers_per_block"]): | |
paths = renew_resnet_paths(blocks[j]) | |
assign_to_checkpoint(paths, new_checkpoint, checkpoint) | |
if any("attn" in layer for layer in down_blocks[i]): | |
num_attn = len( | |
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "attn" in layer} | |
) | |
attns = { | |
layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key] | |
for layer_id in range(num_blocks) | |
} | |
if num_attn > 0: | |
for j in range(config["layers_per_block"]): | |
paths = renew_attention_paths(attns[j]) | |
assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config) | |
mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key] | |
mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key] | |
mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key] | |
# Mid new 2 | |
paths = renew_resnet_paths(mid_block_1_layers) | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
checkpoint, | |
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}], | |
) | |
paths = renew_resnet_paths(mid_block_2_layers) | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
checkpoint, | |
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}], | |
) | |
paths = renew_attention_paths(mid_attn_1_layers, in_mid=True) | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
checkpoint, | |
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}], | |
) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
if any("upsample" in layer for layer in up_blocks[i]): | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ | |
f"up.{i}.upsample.conv.weight" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[f"up.{i}.upsample.conv.bias"] | |
if any("block" in layer for layer in up_blocks[i]): | |
num_blocks = len( | |
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "block" in layer} | |
) | |
blocks = { | |
layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) | |
} | |
if num_blocks > 0: | |
for j in range(config["layers_per_block"] + 1): | |
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} | |
paths = renew_resnet_paths(blocks[j]) | |
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) | |
if any("attn" in layer for layer in up_blocks[i]): | |
num_attn = len( | |
{".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "attn" in layer} | |
) | |
attns = { | |
layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) | |
} | |
if num_attn > 0: | |
for j in range(config["layers_per_block"] + 1): | |
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} | |
paths = renew_attention_paths(attns[j]) | |
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) | |
new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()} | |
return new_checkpoint | |
def convert_vq_autoenc_checkpoint(checkpoint, config): | |
""" | |
Takes a state dict and a config, and returns a converted checkpoint. | |
""" | |
new_checkpoint = {} | |
new_checkpoint["encoder.conv_norm_out.weight"] = checkpoint["encoder.norm_out.weight"] | |
new_checkpoint["encoder.conv_norm_out.bias"] = checkpoint["encoder.norm_out.bias"] | |
new_checkpoint["encoder.conv_in.weight"] = checkpoint["encoder.conv_in.weight"] | |
new_checkpoint["encoder.conv_in.bias"] = checkpoint["encoder.conv_in.bias"] | |
new_checkpoint["encoder.conv_out.weight"] = checkpoint["encoder.conv_out.weight"] | |
new_checkpoint["encoder.conv_out.bias"] = checkpoint["encoder.conv_out.bias"] | |
new_checkpoint["decoder.conv_norm_out.weight"] = checkpoint["decoder.norm_out.weight"] | |
new_checkpoint["decoder.conv_norm_out.bias"] = checkpoint["decoder.norm_out.bias"] | |
new_checkpoint["decoder.conv_in.weight"] = checkpoint["decoder.conv_in.weight"] | |
new_checkpoint["decoder.conv_in.bias"] = checkpoint["decoder.conv_in.bias"] | |
new_checkpoint["decoder.conv_out.weight"] = checkpoint["decoder.conv_out.weight"] | |
new_checkpoint["decoder.conv_out.bias"] = checkpoint["decoder.conv_out.bias"] | |
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "down" in layer}) | |
down_blocks = { | |
layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
} | |
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "up" in layer}) | |
up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} | |
for i in range(num_down_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
if any("downsample" in layer for layer in down_blocks[i]): | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[ | |
f"encoder.down.{i}.downsample.conv.weight" | |
] | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[ | |
f"encoder.down.{i}.downsample.conv.bias" | |
] | |
if any("block" in layer for layer in down_blocks[i]): | |
num_blocks = len( | |
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "block" in layer} | |
) | |
blocks = { | |
layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key] | |
for layer_id in range(num_blocks) | |
} | |
if num_blocks > 0: | |
for j in range(config["layers_per_block"]): | |
paths = renew_resnet_paths(blocks[j]) | |
assign_to_checkpoint(paths, new_checkpoint, checkpoint) | |
if any("attn" in layer for layer in down_blocks[i]): | |
num_attn = len( | |
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "attn" in layer} | |
) | |
attns = { | |
layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key] | |
for layer_id in range(num_blocks) | |
} | |
if num_attn > 0: | |
for j in range(config["layers_per_block"]): | |
paths = renew_attention_paths(attns[j]) | |
assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config) | |
mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key] | |
mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key] | |
mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key] | |
# Mid new 2 | |
paths = renew_resnet_paths(mid_block_1_layers) | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
checkpoint, | |
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}], | |
) | |
paths = renew_resnet_paths(mid_block_2_layers) | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
checkpoint, | |
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}], | |
) | |
paths = renew_attention_paths(mid_attn_1_layers, in_mid=True) | |
assign_to_checkpoint( | |
paths, | |
new_checkpoint, | |
checkpoint, | |
additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}], | |
) | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
if any("upsample" in layer for layer in up_blocks[i]): | |
new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ | |
f"decoder.up.{i}.upsample.conv.weight" | |
] | |
new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[ | |
f"decoder.up.{i}.upsample.conv.bias" | |
] | |
if any("block" in layer for layer in up_blocks[i]): | |
num_blocks = len( | |
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "block" in layer} | |
) | |
blocks = { | |
layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) | |
} | |
if num_blocks > 0: | |
for j in range(config["layers_per_block"] + 1): | |
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} | |
paths = renew_resnet_paths(blocks[j]) | |
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) | |
if any("attn" in layer for layer in up_blocks[i]): | |
num_attn = len( | |
{".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "attn" in layer} | |
) | |
attns = { | |
layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) | |
} | |
if num_attn > 0: | |
for j in range(config["layers_per_block"] + 1): | |
replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} | |
paths = renew_attention_paths(attns[j]) | |
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) | |
new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()} | |
new_checkpoint["quant_conv.weight"] = checkpoint["quant_conv.weight"] | |
new_checkpoint["quant_conv.bias"] = checkpoint["quant_conv.bias"] | |
if "quantize.embedding.weight" in checkpoint: | |
new_checkpoint["quantize.embedding.weight"] = checkpoint["quantize.embedding.weight"] | |
new_checkpoint["post_quant_conv.weight"] = checkpoint["post_quant_conv.weight"] | |
new_checkpoint["post_quant_conv.bias"] = checkpoint["post_quant_conv.bias"] | |
return new_checkpoint | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--config_file", | |
default=None, | |
type=str, | |
required=True, | |
help="The config json file corresponding to the architecture.", | |
) | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
args = parser.parse_args() | |
checkpoint = torch.load(args.checkpoint_path) | |
with open(args.config_file) as f: | |
config = json.loads(f.read()) | |
# unet case | |
key_prefix_set = {key.split(".")[0] for key in checkpoint.keys()} | |
if "encoder" in key_prefix_set and "decoder" in key_prefix_set: | |
converted_checkpoint = convert_vq_autoenc_checkpoint(checkpoint, config) | |
else: | |
converted_checkpoint = convert_ddpm_checkpoint(checkpoint, config) | |
if "ddpm" in config: | |
del config["ddpm"] | |
if config["_class_name"] == "VQModel": | |
model = VQModel(**config) | |
model.load_state_dict(converted_checkpoint) | |
model.save_pretrained(args.dump_path) | |
elif config["_class_name"] == "AutoencoderKL": | |
model = AutoencoderKL(**config) | |
model.load_state_dict(converted_checkpoint) | |
model.save_pretrained(args.dump_path) | |
else: | |
model = UNet2DModel(**config) | |
model.load_state_dict(converted_checkpoint) | |
scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) | |
pipe = DDPMPipeline(unet=model, scheduler=scheduler) | |
pipe.save_pretrained(args.dump_path) | |