Spaces:
Running
on
A10G
Running
on
A10G
import argparse | |
import intel_extension_for_pytorch as ipex | |
import torch | |
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline | |
parser = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) | |
parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") | |
parser.add_argument("--steps", default=None, type=int, help="Num inference steps") | |
args = parser.parse_args() | |
device = "cpu" | |
prompt = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" | |
model_id = "path-to-your-trained-model" | |
pipe = StableDiffusionPipeline.from_pretrained(model_id) | |
if args.dpm: | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe = pipe.to(device) | |
# to channels last | |
pipe.unet = pipe.unet.to(memory_format=torch.channels_last) | |
pipe.vae = pipe.vae.to(memory_format=torch.channels_last) | |
pipe.text_encoder = pipe.text_encoder.to(memory_format=torch.channels_last) | |
if pipe.requires_safety_checker: | |
pipe.safety_checker = pipe.safety_checker.to(memory_format=torch.channels_last) | |
# optimize with ipex | |
sample = torch.randn(2, 4, 64, 64) | |
timestep = torch.rand(1) * 999 | |
encoder_hidden_status = torch.randn(2, 77, 768) | |
input_example = (sample, timestep, encoder_hidden_status) | |
try: | |
pipe.unet = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloat16, inplace=True, sample_input=input_example) | |
except Exception: | |
pipe.unet = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloat16, inplace=True) | |
pipe.vae = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloat16, inplace=True) | |
pipe.text_encoder = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloat16, inplace=True) | |
if pipe.requires_safety_checker: | |
pipe.safety_checker = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloat16, inplace=True) | |
# compute | |
seed = 666 | |
generator = torch.Generator(device).manual_seed(seed) | |
generate_kwargs = {"generator": generator} | |
if args.steps is not None: | |
generate_kwargs["num_inference_steps"] = args.steps | |
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16): | |
image = pipe(prompt, **generate_kwargs).images[0] | |
# save image | |
image.save("generated.png") | |