deepanway's picture
Uplaod files
f1069cc
raw
history blame
6.99 kB
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNet2DConditionModel,
UNet2DModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
torch.backends.cuda.matmul.allow_tf32 = False
class PipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
sample_size=(32, 64),
in_channels=1,
out_channels=1,
layers_per_block=2,
block_out_channels=(128, 128),
down_block_types=("AttnDownBlock2D", "DownBlock2D"),
up_block_types=("UpBlock2D", "AttnUpBlock2D"),
)
return model
@property
def dummy_unet_condition(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
sample_size=(64, 32),
in_channels=1,
out_channels=1,
layers_per_block=2,
block_out_channels=(128, 128),
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
cross_attention_dim=10,
)
return model
@property
def dummy_vqvae_and_unet(self):
torch.manual_seed(0)
vqvae = AutoencoderKL(
sample_size=(128, 64),
in_channels=1,
out_channels=1,
latent_channels=1,
layers_per_block=2,
block_out_channels=(128, 128),
down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"),
up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"),
)
unet = UNet2DModel(
sample_size=(64, 32),
in_channels=1,
out_channels=1,
layers_per_block=2,
block_out_channels=(128, 128),
down_block_types=("AttnDownBlock2D", "DownBlock2D"),
up_block_types=("UpBlock2D", "AttnUpBlock2D"),
)
return vqvae, unet
@slow
def test_audio_diffusion(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
mel = Mel()
scheduler = DDPMScheduler()
pipe = AudioDiffusionPipeline(vqvae=None, unet=self.dummy_unet, mel=mel, scheduler=scheduler)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(42)
output = pipe(generator=generator, steps=4)
audio = output.audios[0]
image = output.images[0]
generator = torch.Generator(device=device).manual_seed(42)
output = pipe(generator=generator, steps=4, return_dict=False)
image_from_tuple = output[0][0]
assert audio.shape == (1, (self.dummy_unet.sample_size[1] - 1) * mel.hop_length)
assert image.height == self.dummy_unet.sample_size[0] and image.width == self.dummy_unet.sample_size[1]
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
image_from_tuple_slice = np.frombuffer(image_from_tuple.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() == 0
scheduler = DDIMScheduler()
dummy_vqvae_and_unet = self.dummy_vqvae_and_unet
pipe = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=mel, scheduler=scheduler
)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
np.random.seed(0)
raw_audio = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].sample_size[1] - 1) * mel.hop_length,))
generator = torch.Generator(device=device).manual_seed(42)
output = pipe(raw_audio=raw_audio, generator=generator, start_step=5, steps=10)
image = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].sample_size[1]
)
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
dummy_unet_condition = self.dummy_unet_condition
pipe = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_unet_condition, mel=mel, scheduler=scheduler
)
np.random.seed(0)
encoding = torch.rand((1, 1, 10))
output = pipe(generator=generator, encoding=encoding)
image = output.images[0]
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([120, 139, 147, 123, 124, 96, 115, 121, 126, 144])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
@slow
@require_torch_gpu
class PipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_audio_diffusion(self):
device = torch_device
pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256")
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=device).manual_seed(42)
output = pipe(generator=generator)
audio = output.audios[0]
image = output.images[0]
assert audio.shape == (1, (pipe.unet.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.sample_size[0] and image.width == pipe.unet.sample_size[1]
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
expected_slice = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0