Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from typing import Tuple | |
import torch | |
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device | |
from diffusers.utils.testing_utils import require_torch | |
class UNetBlockTesterMixin: | |
def dummy_input(self): | |
return self.get_dummy_input() | |
def output_shape(self): | |
if self.block_type == "down": | |
return (4, 32, 16, 16) | |
elif self.block_type == "mid": | |
return (4, 32, 32, 32) | |
elif self.block_type == "up": | |
return (4, 32, 64, 64) | |
raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.") | |
def get_dummy_input( | |
self, | |
include_temb=True, | |
include_res_hidden_states_tuple=False, | |
include_encoder_hidden_states=False, | |
include_skip_sample=False, | |
): | |
batch_size = 4 | |
num_channels = 32 | |
sizes = (32, 32) | |
generator = torch.manual_seed(0) | |
device = torch.device(torch_device) | |
shape = (batch_size, num_channels) + sizes | |
hidden_states = randn_tensor(shape, generator=generator, device=device) | |
dummy_input = {"hidden_states": hidden_states} | |
if include_temb: | |
temb_channels = 128 | |
dummy_input["temb"] = randn_tensor((batch_size, temb_channels), generator=generator, device=device) | |
if include_res_hidden_states_tuple: | |
generator_1 = torch.manual_seed(1) | |
dummy_input["res_hidden_states_tuple"] = (randn_tensor(shape, generator=generator_1, device=device),) | |
if include_encoder_hidden_states: | |
dummy_input["encoder_hidden_states"] = floats_tensor((batch_size, 32, 32)).to(torch_device) | |
if include_skip_sample: | |
dummy_input["skip_sample"] = randn_tensor(((batch_size, 3) + sizes), generator=generator, device=device) | |
return dummy_input | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = { | |
"in_channels": 32, | |
"out_channels": 32, | |
"temb_channels": 128, | |
} | |
if self.block_type == "up": | |
init_dict["prev_output_channel"] = 32 | |
if self.block_type == "mid": | |
init_dict.pop("out_channels") | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_output(self, expected_slice): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
unet_block = self.block_class(**init_dict) | |
unet_block.to(torch_device) | |
unet_block.eval() | |
with torch.no_grad(): | |
output = unet_block(**inputs_dict) | |
if isinstance(output, Tuple): | |
output = output[0] | |
self.assertEqual(output.shape, self.output_shape) | |
output_slice = output[0, -1, -3:, -3:] | |
expected_slice = torch.tensor(expected_slice).to(torch_device) | |
assert torch_all_close(output_slice.flatten(), expected_slice, atol=5e-3) | |
def test_training(self): | |
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
model = self.block_class(**init_dict) | |
model.to(torch_device) | |
model.train() | |
output = model(**inputs_dict) | |
if isinstance(output, Tuple): | |
output = output[0] | |
device = torch.device(torch_device) | |
noise = randn_tensor(output.shape, device=device) | |
loss = torch.nn.functional.mse_loss(output, noise) | |
loss.backward() | |