Spaces:
Sleeping
Sleeping
import yaml | |
import random | |
import inspect | |
import numpy as np | |
from tqdm import tqdm | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import repeat | |
from tools.torch_tools import wav_to_fbank | |
from audioldm.audio.stft import TacotronSTFT | |
from audioldm.variational_autoencoder import AutoencoderKL | |
from audioldm.utils import default_audioldm_config, get_metadata | |
from transformers import CLIPTokenizer, AutoTokenizer, AutoProcessor | |
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, ClapAudioModel, ClapTextModel | |
import sys | |
sys.path.insert(0, "diffusers/src") | |
import diffusers | |
from diffusers.utils import randn_tensor | |
from diffusers import DDPMScheduler, UNet2DConditionModel, UNet2DConditionModelMusic | |
from diffusers import AutoencoderKL as DiffuserAutoencoderKL | |
from layers.layers import chord_tokenizer, beat_tokenizer, Chord_Embedding, Beat_Embedding, Music_PositionalEncoding, Fundamental_Music_Embedding | |
def build_pretrained_models(name): | |
checkpoint = torch.load(get_metadata()[name]["path"], map_location="cpu") | |
scale_factor = checkpoint["state_dict"]["scale_factor"].item() | |
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k} | |
config = default_audioldm_config(name) | |
vae_config = config["model"]["params"]["first_stage_config"]["params"] | |
vae_config["scale_factor"] = scale_factor | |
vae = AutoencoderKL(**vae_config) | |
vae.load_state_dict(vae_state_dict) | |
fn_STFT = TacotronSTFT( | |
config["preprocessing"]["stft"]["filter_length"], | |
config["preprocessing"]["stft"]["hop_length"], | |
config["preprocessing"]["stft"]["win_length"], | |
config["preprocessing"]["mel"]["n_mel_channels"], | |
config["preprocessing"]["audio"]["sampling_rate"], | |
config["preprocessing"]["mel"]["mel_fmin"], | |
config["preprocessing"]["mel"]["mel_fmax"], | |
) | |
vae.eval() | |
fn_STFT.eval() | |
return vae, fn_STFT | |
class AudioDiffusion(nn.Module): | |
def __init__( | |
self, | |
text_encoder_name, | |
scheduler_name, | |
unet_model_name=None, | |
unet_model_config_path=None, | |
snr_gamma=None, | |
freeze_text_encoder=True, | |
uncondition=False, | |
): | |
super().__init__() | |
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required" | |
self.text_encoder_name = text_encoder_name | |
self.scheduler_name = scheduler_name | |
self.unet_model_name = unet_model_name | |
self.unet_model_config_path = unet_model_config_path | |
self.snr_gamma = snr_gamma | |
self.freeze_text_encoder = freeze_text_encoder | |
self.uncondition = uncondition | |
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview | |
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") | |
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") | |
if unet_model_config_path: | |
unet_config = UNet2DConditionModel.load_config(unet_model_config_path) | |
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet") | |
self.set_from = "random" | |
print("UNet initialized randomly.") | |
else: | |
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet") | |
self.set_from = "pre-trained" | |
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4)) | |
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8)) | |
print("UNet initialized from stable diffusion checkpoint.") | |
if "stable-diffusion" in self.text_encoder_name: | |
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer") | |
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder") | |
elif "t5" in self.text_encoder_name: | |
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name) | |
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name) | |
else: | |
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name) | |
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name) | |
def compute_snr(self, timesteps): | |
""" | |
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 | |
""" | |
alphas_cumprod = self.noise_scheduler.alphas_cumprod | |
sqrt_alphas_cumprod = alphas_cumprod**0.5 | |
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 | |
# Expand the tensors. | |
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] | |
alpha = sqrt_alphas_cumprod.expand(timesteps.shape) | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] | |
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) | |
# Compute SNR. | |
snr = (alpha / sigma) ** 2 | |
return snr | |
def encode_text(self, prompt): | |
device = self.text_encoder.device | |
batch = self.tokenizer( | |
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
) | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
if self.freeze_text_encoder: | |
with torch.no_grad(): | |
encoder_hidden_states = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
else: | |
encoder_hidden_states = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
boolean_encoder_mask = (attention_mask == 1).to(device) | |
return encoder_hidden_states, boolean_encoder_mask | |
def forward(self, latents, prompt, validation_mode=False): | |
device = self.text_encoder.device | |
num_train_timesteps = self.noise_scheduler.num_train_timesteps | |
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device) | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt) | |
if self.uncondition: | |
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1] | |
if len(mask_indices) > 0: | |
encoder_hidden_states[mask_indices] = 0 | |
bsz = latents.shape[0] | |
if validation_mode: | |
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device) | |
else: | |
# Sample a random timestep for each instance | |
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device) | |
# print('in if ', timesteps) | |
timesteps = timesteps.long() | |
# print('outside if ' , timesteps) | |
noise = torch.randn_like(latents) | |
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) | |
# Get the target for loss depending on the prediction type | |
if self.noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif self.noise_scheduler.config.prediction_type == "v_prediction": | |
target = self.noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}") | |
if self.set_from == "random": | |
model_pred = self.unet( | |
noisy_latents, timesteps, encoder_hidden_states, | |
encoder_attention_mask=boolean_encoder_mask | |
).sample | |
elif self.set_from == "pre-trained": | |
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() | |
model_pred = self.unet( | |
compressed_latents, timesteps, encoder_hidden_states, | |
encoder_attention_mask=boolean_encoder_mask | |
).sample | |
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() | |
if self.snr_gamma is None: | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
else: | |
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. | |
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py | |
snr = self.compute_snr(timesteps) | |
mse_loss_weights = ( | |
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr | |
) | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights | |
loss = loss.mean() | |
return loss | |
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, | |
disable_progress=True): | |
device = self.text_encoder.device | |
classifier_free_guidance = guidance_scale > 1.0 | |
batch_size = len(prompt) * num_samples_per_prompt | |
if classifier_free_guidance: | |
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt) | |
else: | |
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt) | |
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) | |
inference_scheduler.set_timesteps(num_steps, device=device) | |
timesteps = inference_scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) | |
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order | |
progress_bar = tqdm(range(num_steps), disable=disable_progress) | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents | |
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) | |
noise_pred = self.unet( | |
latent_model_input, t, encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=boolean_prompt_mask | |
).sample | |
# perform guidance | |
if classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): | |
progress_bar.update(1) | |
if self.set_from == "pre-trained": | |
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() | |
return latents | |
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): | |
shape = (batch_size, num_channels_latents, 256, 16) | |
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * inference_scheduler.init_noise_sigma | |
return latents | |
def encode_text_classifier_free(self, prompt, num_samples_per_prompt): | |
device = self.text_encoder.device | |
batch = self.tokenizer( | |
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
) | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
with torch.no_grad(): | |
prompt_embeds = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# get unconditional embeddings for classifier free guidance | |
uncond_tokens = [""] * len(prompt) | |
max_length = prompt_embeds.shape[1] | |
uncond_batch = self.tokenizer( | |
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", | |
) | |
uncond_input_ids = uncond_batch.input_ids.to(device) | |
uncond_attention_mask = uncond_batch.attention_mask.to(device) | |
with torch.no_grad(): | |
negative_prompt_embeds = self.text_encoder( | |
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask | |
)[0] | |
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# For classifier free guidance, we need to do two forward passes. | |
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) | |
boolean_prompt_mask = (prompt_mask == 1).to(device) | |
return prompt_embeds, boolean_prompt_mask | |
class MusicAudioDiffusion(nn.Module): | |
def __init__( | |
self, | |
text_encoder_name, | |
scheduler_name, | |
unet_model_name=None, | |
unet_model_config_path=None, | |
snr_gamma=None, | |
freeze_text_encoder=True, | |
uncondition=False, | |
d_fme = 1024, #FME | |
fme_type = "se", | |
base = 1, | |
if_trainable = True, | |
translation_bias_type = "nd", | |
emb_nn = True, | |
d_pe = 1024, #PE | |
if_index = True, | |
if_global_timing = True, | |
if_modulo_timing = False, | |
d_beat = 1024, #Beat | |
d_oh_beat_type = 7, | |
beat_len = 50, | |
d_chord = 1024, #Chord | |
d_oh_chord_type = 12, | |
d_oh_inv_type = 4, | |
chord_len = 20, | |
): | |
super().__init__() | |
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required" | |
self.text_encoder_name = text_encoder_name | |
self.scheduler_name = scheduler_name | |
self.unet_model_name = unet_model_name | |
self.unet_model_config_path = unet_model_config_path | |
self.snr_gamma = snr_gamma | |
self.freeze_text_encoder = freeze_text_encoder | |
self.uncondition = uncondition | |
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview | |
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") | |
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") | |
if unet_model_config_path: | |
unet_config = UNet2DConditionModelMusic.load_config(unet_model_config_path) | |
self.unet = UNet2DConditionModelMusic.from_config(unet_config, subfolder="unet") | |
self.set_from = "random" | |
print("UNet initialized randomly.") | |
else: | |
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet") | |
self.set_from = "pre-trained" | |
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4)) | |
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8)) | |
print("UNet initialized from stable diffusion checkpoint.") | |
if "stable-diffusion" in self.text_encoder_name: | |
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer") | |
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder") | |
elif "t5" in self.text_encoder_name: | |
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name) | |
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name) | |
else: | |
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name) | |
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name) | |
self.device = self.text_encoder.device | |
#Music Feature Encoder | |
self.FME = Fundamental_Music_Embedding(d_model = d_fme, base= base, if_trainable = False, type = fme_type,emb_nn=emb_nn,translation_bias_type = translation_bias_type) | |
self.PE = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device) | |
# self.PE2 = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device) | |
self.beat_tokenizer = beat_tokenizer(seq_len_beat=beat_len, if_pad = True) | |
self.beat_embedding_layer = Beat_Embedding(self.PE, d_model = d_beat, d_oh_beat_type = d_oh_beat_type) | |
self.chord_embedding_layer = Chord_Embedding(self.FME, self.PE, d_model = d_chord, d_oh_type = d_oh_chord_type, d_oh_inv = d_oh_inv_type) | |
self.chord_tokenizer = chord_tokenizer(seq_len_chord=chord_len, if_pad = True) | |
def compute_snr(self, timesteps): | |
""" | |
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 | |
""" | |
alphas_cumprod = self.noise_scheduler.alphas_cumprod | |
sqrt_alphas_cumprod = alphas_cumprod**0.5 | |
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 | |
# Expand the tensors. | |
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] | |
alpha = sqrt_alphas_cumprod.expand(timesteps.shape) | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() | |
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): | |
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] | |
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) | |
# Compute SNR. | |
snr = (alpha / sigma) ** 2 | |
return snr | |
def encode_text(self, prompt): | |
device = self.text_encoder.device | |
batch = self.tokenizer( | |
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
) | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) #cuda | |
if self.freeze_text_encoder: | |
with torch.no_grad(): | |
encoder_hidden_states = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] #batch, len_text, dim | |
else: | |
encoder_hidden_states = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
boolean_encoder_mask = (attention_mask == 1).to(device) ##batch, len_text | |
return encoder_hidden_states, boolean_encoder_mask | |
def encode_beats(self, beats): | |
# device = self.beat_embedding_layer.device | |
out_beat = [] | |
out_beat_timing = [] | |
out_mask = [] | |
for beat in beats: | |
tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat) | |
out_beat.append(tokenized_beats) | |
out_beat_timing.append(tokenized_beats_timing) | |
out_mask.append(tokenized_beat_mask) | |
out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).cuda(), torch.tensor(out_beat_timing).cuda(), torch.tensor(out_mask).cuda() #batch, len_beat | |
embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing) | |
return embedded_beat, out_mask | |
def encode_chords(self, chords,chords_time): | |
out_chord_root = [] | |
out_chord_type = [] | |
out_chord_inv = [] | |
out_chord_timing = [] | |
out_mask = [] | |
for chord, chord_time in zip(chords,chords_time): #batch loop | |
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time) | |
out_chord_root.append(tokenized_chord_root) | |
out_chord_type.append(tokenized_chord_type) | |
out_chord_inv.append(tokenized_chord_inv) | |
out_chord_timing.append(tokenized_chord_time) | |
out_mask.append(tokenized_chord_mask) | |
#chords: (B, LEN, 4) | |
out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).cuda(), torch.tensor(out_chord_type).cuda(), torch.tensor(out_chord_inv).cuda(), torch.tensor(out_chord_timing).cuda(), torch.tensor(out_mask).cuda() | |
embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing) | |
return embedded_chord, out_mask | |
# return out_chord_root, out_mask | |
def forward(self, latents, prompt, beats, chords,chords_time, validation_mode=False): | |
device = self.text_encoder.device | |
num_train_timesteps = self.noise_scheduler.num_train_timesteps | |
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device) | |
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt) | |
# with torch.no_grad(): | |
encoded_beats, beat_mask = self.encode_beats(beats) #batch, len_beats, dim; batch, len_beats | |
encoded_chords, chord_mask = self.encode_chords(chords,chords_time) | |
if self.uncondition: | |
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1] | |
if len(mask_indices) > 0: | |
encoder_hidden_states[mask_indices] = 0 | |
encoded_chords[mask_indices] = 0 | |
encoded_beats[mask_indices] = 0 | |
bsz = latents.shape[0] | |
if validation_mode: | |
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device) | |
else: | |
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device) | |
timesteps = timesteps.long() | |
noise = torch.randn_like(latents) | |
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) | |
# Get the target for loss depending on the prediction type | |
if self.noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif self.noise_scheduler.config.prediction_type == "v_prediction": | |
target = self.noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}") | |
if self.set_from == "random": | |
# model_pred = torch.zeros((bsz,8,256,16)).to(device) | |
model_pred = self.unet( | |
noisy_latents, timesteps, encoder_hidden_states, encoded_beats, encoded_chords, | |
encoder_attention_mask=boolean_encoder_mask, beat_attention_mask = beat_mask, chord_attention_mask = chord_mask | |
).sample | |
elif self.set_from == "pre-trained": | |
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() | |
model_pred = self.unet( | |
compressed_latents, timesteps, encoder_hidden_states, | |
encoder_attention_mask=boolean_encoder_mask | |
).sample | |
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() | |
if self.snr_gamma is None: | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
else: | |
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. | |
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py | |
snr = self.compute_snr(timesteps) | |
mse_loss_weights = ( | |
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr | |
) | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights | |
loss = loss.mean() | |
return loss | |
def inference(self, prompt, beats, chords,chords_time, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, | |
disable_progress=True): | |
device = self.text_encoder.device | |
classifier_free_guidance = guidance_scale > 1.0 | |
batch_size = len(prompt) * num_samples_per_prompt | |
if classifier_free_guidance: | |
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt) | |
encoded_beats, beat_mask = self.encode_beats_classifier_free(beats, num_samples_per_prompt) #batch, len_beats, dim; batch, len_beats | |
encoded_chords, chord_mask = self.encode_chords_classifier_free(chords, chords_time, num_samples_per_prompt) | |
else: | |
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt) | |
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) | |
encoded_beats, beat_mask = self.encode_beats(beats) #batch, len_beats, dim; batch, len_beats | |
encoded_beats = encoded_beats.repeat_interleave(num_samples_per_prompt, 0) | |
beat_mask = beat_mask.repeat_interleave(num_samples_per_prompt, 0) | |
encoded_chords, chord_mask = self.encode_chords(chords,chords_time) | |
encoded_chords = encoded_chords.repeat_interleave(num_samples_per_prompt, 0) | |
chord_mask = chord_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# print(f"encoded_chords:{encoded_chords.shape}, chord_mask:{chord_mask.shape}, prompt_embeds:{prompt_embeds.shape},boolean_prompt_mask:{boolean_prompt_mask.shape} ") | |
inference_scheduler.set_timesteps(num_steps, device=device) | |
timesteps = inference_scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) | |
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order | |
progress_bar = tqdm(range(num_steps), disable=disable_progress) | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents | |
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) | |
noise_pred = self.unet( | |
latent_model_input, t, encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=boolean_prompt_mask, | |
beat_features = encoded_beats, beat_attention_mask = beat_mask, chord_features = encoded_chords,chord_attention_mask = chord_mask | |
).sample | |
# perform guidance | |
if classifier_free_guidance: #should work for beats and chords too | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): | |
progress_bar.update(1) | |
if self.set_from == "pre-trained": | |
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() | |
return latents | |
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): | |
shape = (batch_size, num_channels_latents, 256, 16) | |
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * inference_scheduler.init_noise_sigma | |
return latents | |
def encode_text_classifier_free(self, prompt, num_samples_per_prompt): | |
device = self.text_encoder.device | |
batch = self.tokenizer( | |
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
) | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
with torch.no_grad(): | |
prompt_embeds = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# get unconditional embeddings for classifier free guidance | |
# print(len(prompt), 'this is prompt len') | |
uncond_tokens = [""] * len(prompt) | |
max_length = prompt_embeds.shape[1] | |
uncond_batch = self.tokenizer( | |
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", | |
) | |
uncond_input_ids = uncond_batch.input_ids.to(device) | |
uncond_attention_mask = uncond_batch.attention_mask.to(device) | |
with torch.no_grad(): | |
negative_prompt_embeds = self.text_encoder( | |
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask | |
)[0] | |
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# For classifier free guidance, we need to do two forward passes. | |
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) | |
boolean_prompt_mask = (prompt_mask == 1).to(device) | |
return prompt_embeds, boolean_prompt_mask | |
def encode_beats_classifier_free(self, beats, num_samples_per_prompt): | |
with torch.no_grad(): | |
out_beat = [] | |
out_beat_timing = [] | |
out_mask = [] | |
for beat in beats: | |
tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat) | |
out_beat.append(tokenized_beats) | |
out_beat_timing.append(tokenized_beats_timing) | |
out_mask.append(tokenized_beat_mask) | |
out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).cuda(), torch.tensor(out_beat_timing).cuda(), torch.tensor(out_mask).cuda() #batch, len_beat | |
embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing) | |
embedded_beat = embedded_beat.repeat_interleave(num_samples_per_prompt, 0) | |
out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0) | |
uncond_beats = [[[],[]]] * len(beats) | |
max_length = embedded_beat.shape[1] | |
with torch.no_grad(): | |
out_beat_unc = [] | |
out_beat_timing_unc = [] | |
out_mask_unc = [] | |
for beat in uncond_beats: | |
tokenized_beats, tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat) | |
out_beat_unc.append(tokenized_beats) | |
out_beat_timing_unc.append(tokenized_beats_timing) | |
out_mask_unc.append(tokenized_beat_mask) | |
out_beat_unc, out_beat_timing_unc, out_mask_unc = torch.tensor(out_beat_unc).cuda(), torch.tensor(out_beat_timing_unc).cuda(), torch.tensor(out_mask_unc).cuda() #batch, len_beat | |
embedded_beat_unc = self.beat_embedding_layer(out_beat_unc, out_beat_timing_unc) | |
embedded_beat_unc = embedded_beat_unc.repeat_interleave(num_samples_per_prompt, 0) | |
out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0) | |
embedded_beat = torch.cat([embedded_beat_unc, embedded_beat]) | |
out_mask = torch.cat([out_mask_unc, out_mask]) | |
return embedded_beat, out_mask | |
def encode_chords_classifier_free(self, chords, chords_time, num_samples_per_prompt): | |
with torch.no_grad(): | |
out_chord_root = [] | |
out_chord_type = [] | |
out_chord_inv = [] | |
out_chord_timing = [] | |
out_mask = [] | |
for chord, chord_time in zip(chords,chords_time): #batch loop | |
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time) | |
out_chord_root.append(tokenized_chord_root) | |
out_chord_type.append(tokenized_chord_type) | |
out_chord_inv.append(tokenized_chord_inv) | |
out_chord_timing.append(tokenized_chord_time) | |
out_mask.append(tokenized_chord_mask) | |
out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).cuda(), torch.tensor(out_chord_type).cuda(), torch.tensor(out_chord_inv).cuda(), torch.tensor(out_chord_timing).cuda(), torch.tensor(out_mask).cuda() | |
embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing) | |
embedded_chord = embedded_chord.repeat_interleave(num_samples_per_prompt, 0) | |
out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0) | |
chords_unc=[[]] * len(chords) | |
chords_time_unc=[[]] * len(chords_time) | |
max_length = embedded_chord.shape[1] | |
with torch.no_grad(): | |
out_chord_root_unc = [] | |
out_chord_type_unc = [] | |
out_chord_inv_unc = [] | |
out_chord_timing_unc = [] | |
out_mask_unc = [] | |
for chord, chord_time in zip(chords_unc,chords_time_unc): #batch loop | |
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time) | |
out_chord_root_unc.append(tokenized_chord_root) | |
out_chord_type_unc.append(tokenized_chord_type) | |
out_chord_inv_unc.append(tokenized_chord_inv) | |
out_chord_timing_unc.append(tokenized_chord_time) | |
out_mask_unc.append(tokenized_chord_mask) | |
out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc, out_mask_unc = torch.tensor(out_chord_root_unc).cuda(), torch.tensor(out_chord_type_unc).cuda(), torch.tensor(out_chord_inv_unc).cuda(), torch.tensor(out_chord_timing_unc).cuda(), torch.tensor(out_mask_unc).cuda() | |
embedded_chord_unc = self.chord_embedding_layer(out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc) | |
embedded_chord_unc = embedded_chord_unc.repeat_interleave(num_samples_per_prompt, 0) | |
out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0) | |
embedded_chord = torch.cat([embedded_chord_unc, embedded_chord]) | |
out_mask = torch.cat([out_mask_unc, out_mask]) | |
return embedded_chord, out_mask | |