Upload folder using huggingface_hub
Browse files- app.py +1 -1
- src/data/data_utils.py +424 -0
- src/models +63 -0
app.py
CHANGED
@@ -10,7 +10,7 @@ import numpy as np
|
|
10 |
from src.data.data_utils import clean_board
|
11 |
from src.engine.agents.policies import beam_search, eval_board, one_depth_eval
|
12 |
from src.engine.agents.viz_utils import plot_save_beam_search, save_svg, board_to_svg
|
13 |
-
from .models.
|
14 |
|
15 |
# TEMP_DIR = "./demos/temp/"
|
16 |
CHKPT = "checkpoint.pt"
|
|
|
10 |
from src.data.data_utils import clean_board
|
11 |
from src.engine.agents.policies import beam_search, eval_board, one_depth_eval
|
12 |
from src.engine.agents.viz_utils import plot_save_beam_search, save_svg, board_to_svg
|
13 |
+
from src.models.model_space import MultiInputConv
|
14 |
|
15 |
# TEMP_DIR = "./demos/temp/"
|
16 |
CHKPT = "checkpoint.pt"
|
src/data/data_utils.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import re
|
3 |
+
|
4 |
+
import chess.pgn
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from loguru import logger
|
8 |
+
|
9 |
+
dict_pieces = {
|
10 |
+
"white": {
|
11 |
+
"R": "rook",
|
12 |
+
"N": "knight",
|
13 |
+
"B": "bishop",
|
14 |
+
"Q": "queen",
|
15 |
+
"K": "king",
|
16 |
+
"P": "pawn",
|
17 |
+
},
|
18 |
+
"black": {
|
19 |
+
"r": "rook",
|
20 |
+
"n": "knight",
|
21 |
+
"b": "bishop",
|
22 |
+
"q": "queen",
|
23 |
+
"k": "king",
|
24 |
+
"p": "pawn",
|
25 |
+
},
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
def arrays_to_lists(data):
|
30 |
+
"""Recursively transform all numpy arrays in a nested structure into lists.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
data: The nested structure containing numpy arrays.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
The nested structure with all numpy arrays converted to lists.
|
37 |
+
|
38 |
+
"""
|
39 |
+
if isinstance(data, np.ndarray):
|
40 |
+
data = data.tolist()
|
41 |
+
return [arrays_to_lists(item) for item in data]
|
42 |
+
elif isinstance(data, list):
|
43 |
+
return [arrays_to_lists(item) for item in data]
|
44 |
+
else:
|
45 |
+
return data
|
46 |
+
|
47 |
+
|
48 |
+
@logger.catch
|
49 |
+
def clean_board(board: str) -> chess.Board:
|
50 |
+
"""Clean the board string and return a chess.Board object.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
board (str): board string
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
chess.Board: chess.Board object
|
57 |
+
|
58 |
+
"""
|
59 |
+
board = board.replace("'", "")
|
60 |
+
board = board.replace('"', "")
|
61 |
+
|
62 |
+
try:
|
63 |
+
board = chess.Board(fen=board)
|
64 |
+
except ValueError:
|
65 |
+
try:
|
66 |
+
game = chess.pgn.read_game(io.StringIO(board))
|
67 |
+
board = game.board()
|
68 |
+
for move in game.mainline_moves():
|
69 |
+
board.push(move)
|
70 |
+
except ValueError:
|
71 |
+
raise ValueError("Invalid FEN or PGN board provided.")
|
72 |
+
|
73 |
+
return board
|
74 |
+
|
75 |
+
|
76 |
+
@logger.catch
|
77 |
+
def format_board(board: chess.Board) -> str:
|
78 |
+
"""Format a board to a compact string.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
board (chess.Board): board to format.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
str: formatted board.
|
85 |
+
|
86 |
+
"""
|
87 |
+
return str(board).replace("\n", "").replace(" ", "")
|
88 |
+
|
89 |
+
|
90 |
+
@logger.catch
|
91 |
+
def string_to_array(str_board: str, is_white: bool = True) -> np.array:
|
92 |
+
"""Convert a string compact board to a numpy array. The array is of shape (6, 8, 8) and is the one-hot encoding of
|
93 |
+
the player pieces.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
str_board (str): compact board.
|
97 |
+
is_white (bool, optional): True if white pieces, False otherwise. Defaults to True.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
np.array: numpy array of shape (6, 8, 8).
|
101 |
+
|
102 |
+
"""
|
103 |
+
list_board = list(str_board)
|
104 |
+
key = "white" if is_white else "black"
|
105 |
+
return np.array(
|
106 |
+
[
|
107 |
+
np.reshape([1 * (p == piece) for p in list_board], newshape=(8, 8))
|
108 |
+
for piece in list(dict_pieces[key])
|
109 |
+
]
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
def board_to_list_index(board: chess.Board) -> list:
|
114 |
+
"""Convert a chess board to a list of indexes.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
board (chess.Board): board to convert.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
list: list of indexes.
|
121 |
+
|
122 |
+
"""
|
123 |
+
list_board = list(format_board(board))
|
124 |
+
idx_white = [np.flatnonzero([1 * (p == piece) for p in list_board]).tolist()
|
125 |
+
for piece in list(dict_pieces["white"])]
|
126 |
+
idx_black = [np.flatnonzero([1 * (p == piece) for p in list_board]).tolist()
|
127 |
+
for piece in list(dict_pieces["black"])]
|
128 |
+
|
129 |
+
idx_white = [idx if len(idx) > 0 else None for idx in idx_white]
|
130 |
+
idx_black = [idx if len(idx) > 0 else None for idx in idx_black]
|
131 |
+
|
132 |
+
active_color = 1 * (board.turn == chess.WHITE)
|
133 |
+
|
134 |
+
castling = [board.has_kingside_castling_rights(chess.WHITE) * 1,
|
135 |
+
board.has_queenside_castling_rights(chess.WHITE) * 1,
|
136 |
+
board.has_kingside_castling_rights(chess.BLACK) * 1,
|
137 |
+
board.has_queenside_castling_rights(chess.BLACK) * 1]
|
138 |
+
|
139 |
+
en_passant = board.ep_square if board.ep_square else -1
|
140 |
+
|
141 |
+
list_indexes = idx_white + idx_black + [active_color] + [castling] + [en_passant] + [board.halfmove_clock] + [
|
142 |
+
board.fullmove_number]
|
143 |
+
|
144 |
+
return list_indexes
|
145 |
+
|
146 |
+
|
147 |
+
def list_index_to_fen(idxs: list) -> str:
|
148 |
+
"""Convert a list of indexes to a FEN string.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
idxs (list): list of indexes.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
str: FEN string.
|
155 |
+
|
156 |
+
"""
|
157 |
+
idx_white = idxs[:6]
|
158 |
+
idx_black = idxs[6:12]
|
159 |
+
active_color, castling, en_passant, halfmove, fullmove = idxs[12:]
|
160 |
+
list_board = ["."] * 64
|
161 |
+
for i, piece in enumerate(list(dict_pieces["white"])):
|
162 |
+
if idx_white[i]:
|
163 |
+
for idx in idx_white[i]:
|
164 |
+
list_board[idx] = piece
|
165 |
+
for i, piece in enumerate(list(dict_pieces["black"])):
|
166 |
+
if idx_black[i]:
|
167 |
+
for idx in idx_black[i]:
|
168 |
+
list_board[idx] = piece
|
169 |
+
for k in range(7):
|
170 |
+
list_board.insert(8 * (k + 1) + k, "/")
|
171 |
+
|
172 |
+
active_color = "w" if active_color else "b"
|
173 |
+
|
174 |
+
str_castling = ["K" if castling[0] else "",
|
175 |
+
"Q" if castling[1] else "",
|
176 |
+
"k" if castling[2] else "",
|
177 |
+
"q" if castling[3] else ""]
|
178 |
+
str_castling = "".join(str_castling)
|
179 |
+
str_castling = str_castling if str_castling else "-"
|
180 |
+
|
181 |
+
en_passant = chess.SQUARE_NAMES[en_passant] if en_passant != -1 else "-"
|
182 |
+
|
183 |
+
fen = ("".join(list_board) + " "
|
184 |
+
+ active_color + " "
|
185 |
+
+ str_castling + " "
|
186 |
+
+ str(en_passant) + " "
|
187 |
+
+ str(halfmove) + " "
|
188 |
+
+ str(fullmove))
|
189 |
+
fen = re.sub(r'\.+', lambda m: str(len(m.group())), fen)
|
190 |
+
return fen
|
191 |
+
|
192 |
+
|
193 |
+
def list_index_to_tensor(idxs: list) -> np.array:
|
194 |
+
"""Convert a list of indexes to a tensor.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
idxs (list): list of indexes.
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
np.array: tensor.
|
201 |
+
|
202 |
+
"""
|
203 |
+
tensor_pieces = np.zeros((12, 8 * 8), dtype=np.int8)
|
204 |
+
for i, list_idx in enumerate(idxs[:12]):
|
205 |
+
if list_idx:
|
206 |
+
for idx in list_idx:
|
207 |
+
tensor_pieces[i, idx] = 1
|
208 |
+
tensor_pieces = tensor_pieces.reshape((12, 8, 8))
|
209 |
+
|
210 |
+
return tensor_pieces
|
211 |
+
|
212 |
+
|
213 |
+
@logger.catch
|
214 |
+
def uci_to_coordinates(move: chess.Move) -> tuple:
|
215 |
+
"""Convert a move in UCI format to coordinates.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
move (chess.Move): move to convert.
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
tuple: coordinates of the origin square and coordinates of the destination square.
|
222 |
+
|
223 |
+
"""
|
224 |
+
return (7 - move.from_square // 8, move.from_square % 8), (
|
225 |
+
7 - move.to_square // 8,
|
226 |
+
move.to_square % 8,
|
227 |
+
)
|
228 |
+
|
229 |
+
|
230 |
+
@logger.catch
|
231 |
+
def moves_to_tensor(moves: list[chess.Move]) -> np.array:
|
232 |
+
"""Convert a list of moves to a (8*8, 8*8) tensor. For each origin square, the tensor contains a vector of size 8*8
|
233 |
+
with 1 at the index of the destination squares in list of moves, 0 otherwise.
|
234 |
+
|
235 |
+
Args:
|
236 |
+
moves (list[chess.Move]): list of moves.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
np.array: tensor of possible moves from each square.
|
240 |
+
|
241 |
+
"""
|
242 |
+
moves_tensor = np.zeros(shape=(8 * 8, 8 * 8), dtype=np.int8)
|
243 |
+
for move in moves:
|
244 |
+
from_coordinates, to_coordinates = uci_to_coordinates(move)
|
245 |
+
moves_tensor[
|
246 |
+
from_coordinates[0] * 8 + from_coordinates[1],
|
247 |
+
to_coordinates[0] * 8 + to_coordinates[1],
|
248 |
+
] = 1
|
249 |
+
return moves_tensor
|
250 |
+
|
251 |
+
|
252 |
+
@logger.catch
|
253 |
+
def board_to_tensor(board: chess.Board) -> tuple[np.array, np.array, np.array]:
|
254 |
+
"""Convert a board to a tuple of shapes ((12, 8, 8), (1) , (4)). The tuple contains the one-hot encoding of the
|
255 |
+
board, the active color and the castling rights.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
board (chess.Board): board to convert.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
tuple[np.array, np.array, np.array]: tuple of tensors.
|
262 |
+
|
263 |
+
"""
|
264 |
+
list_board = list(format_board(board))
|
265 |
+
|
266 |
+
idx_white = [np.flatnonzero([1 * (p == piece) for p in list_board]).tolist()
|
267 |
+
for piece in list(dict_pieces["white"])]
|
268 |
+
idx_black = [np.flatnonzero([1 * (p == piece) for p in list_board]).tolist()
|
269 |
+
for piece in list(dict_pieces["black"])]
|
270 |
+
|
271 |
+
active_color = 1 * (board.turn == chess.WHITE)
|
272 |
+
|
273 |
+
castling = [board.has_kingside_castling_rights(chess.WHITE) * 1,
|
274 |
+
board.has_queenside_castling_rights(chess.WHITE) * 1,
|
275 |
+
board.has_kingside_castling_rights(chess.BLACK) * 1,
|
276 |
+
board.has_queenside_castling_rights(chess.BLACK) * 1]
|
277 |
+
|
278 |
+
return list_index_to_tensor(idx_white + idx_black), np.array([active_color]), np.array(castling)
|
279 |
+
|
280 |
+
|
281 |
+
@logger.catch
|
282 |
+
def batch_moves_to_tensor(batch_moves: list[list[chess.Move]]) -> np.array:
|
283 |
+
"""Convert a batch of list of moves to a batch of (8*8, 8*8) tensors.
|
284 |
+
|
285 |
+
Args:
|
286 |
+
batch_moves (list[list[chess.Move]]): batch of list of moves.
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
list[np.array]: batch of moves tensors.
|
290 |
+
|
291 |
+
"""
|
292 |
+
|
293 |
+
return np.array([moves_to_tensor(moves) for moves in batch_moves])
|
294 |
+
|
295 |
+
|
296 |
+
@logger.catch
|
297 |
+
def batch_boards_to_tensor(
|
298 |
+
batch_boards: list[chess.Board]
|
299 |
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
300 |
+
"""Convert a batch of boards to a batch of board tensors.
|
301 |
+
|
302 |
+
Args:
|
303 |
+
batch_boards (list[chess.Board]): batch of boards to convert.
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
tuple[torch.Tensor, torch.Tensor, torch.Tensor]: tuple of tensors.
|
307 |
+
|
308 |
+
"""
|
309 |
+
tensors = [board_to_tensor(board) for board in batch_boards]
|
310 |
+
return (torch.Tensor(np.array([tensors[i][0] for i in range(len(tensors))])),
|
311 |
+
torch.Tensor(np.array([tensors[i][1] for i in range(len(tensors))])),
|
312 |
+
torch.Tensor(np.array([tensors[i][2] for i in range(len(tensors))])))
|
313 |
+
|
314 |
+
|
315 |
+
@logger.catch
|
316 |
+
def game_to_legal_moves_tensor(game: chess.pgn.Game) -> np.array:
|
317 |
+
"""Convert a game to a tensor of legal moves. The tensor is of shape (nb_moves, 8*8, 8*8) and contains a tensor of
|
318 |
+
legal moves for each move of the game.
|
319 |
+
|
320 |
+
Args:
|
321 |
+
game (chess.pgn.Game): game to convert.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
np.array: tensor of legal moves.
|
325 |
+
|
326 |
+
"""
|
327 |
+
board = game.board()
|
328 |
+
boards = []
|
329 |
+
for move in game.mainline_moves():
|
330 |
+
board.push(move)
|
331 |
+
boards.append(board.copy())
|
332 |
+
legal_moves_tensors = batch_moves_to_tensor(
|
333 |
+
[list(board.legal_moves) for board in boards]
|
334 |
+
)
|
335 |
+
return np.array(legal_moves_tensors)
|
336 |
+
|
337 |
+
|
338 |
+
@logger.catch
|
339 |
+
def game_to_board_tensor(game: chess.pgn.Game) -> np.array:
|
340 |
+
"""Convert a game to a tensor of boards. The tensor is of shape (nb_moves, 12, 8, 8) and contains a board tensor for
|
341 |
+
each move of the game.
|
342 |
+
|
343 |
+
Args:
|
344 |
+
game (chess.pgn.Game): game to convert.
|
345 |
+
|
346 |
+
Returns:
|
347 |
+
np.array: tensor of boards.
|
348 |
+
|
349 |
+
"""
|
350 |
+
board = game.board()
|
351 |
+
boards = []
|
352 |
+
for move in game.mainline_moves():
|
353 |
+
board.push(move)
|
354 |
+
boards.append(board.copy())
|
355 |
+
board_tensors = batch_boards_to_tensor(boards)
|
356 |
+
return np.array(board_tensors)
|
357 |
+
|
358 |
+
|
359 |
+
@logger.catch(exclude=ValueError)
|
360 |
+
def result_to_tensor(result: str) -> np.array:
|
361 |
+
"""Convert a game result to a tensor. The tensor is of shape (1,) and contains 1 for a white win, 0 for a draw and
|
362 |
+
-1 for a white loss.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
result (str): game result.
|
366 |
+
|
367 |
+
Returns:
|
368 |
+
np.array: tensor of game result.
|
369 |
+
|
370 |
+
"""
|
371 |
+
if result == "1-0":
|
372 |
+
return np.array([1], dtype=np.int8)
|
373 |
+
elif result == "0-1":
|
374 |
+
return np.array([-1], dtype=np.int8)
|
375 |
+
elif result == "1/2-1/2":
|
376 |
+
return np.array([0], dtype=np.int8)
|
377 |
+
else:
|
378 |
+
raise ValueError(f"Result {result} not supported.")
|
379 |
+
|
380 |
+
|
381 |
+
@logger.catch
|
382 |
+
def batch_results_to_tensor(batch_results: list[str]) -> np.array:
|
383 |
+
"""Convert a batch of game results to a tensor. The tensor is of shape (nb_games, 1) and contains a tensor of game
|
384 |
+
result for each game of the batch.
|
385 |
+
|
386 |
+
Args:
|
387 |
+
batch_results (list[str]): batch of game results.
|
388 |
+
|
389 |
+
Returns:
|
390 |
+
np.array: tensor of game results.
|
391 |
+
|
392 |
+
"""
|
393 |
+
return np.array([result_to_tensor(result) for result in batch_results])
|
394 |
+
|
395 |
+
|
396 |
+
@logger.catch
|
397 |
+
def read_boards_from_pgn(pgn_file: str, start_move: int = 0, end_move: int = 0) -> list[chess.Board]:
|
398 |
+
"""Read boards from a PGN file.
|
399 |
+
|
400 |
+
Args:
|
401 |
+
pgn_file (str): path to the PGN file
|
402 |
+
start_move (int): move to start from in each game
|
403 |
+
end_move (int): move to end at in each game (counting from the end)
|
404 |
+
|
405 |
+
Returns:
|
406 |
+
list[chess.Board]: list of boards
|
407 |
+
|
408 |
+
"""
|
409 |
+
pgn = open(pgn_file)
|
410 |
+
game = chess.pgn.read_game(pgn)
|
411 |
+
boards = []
|
412 |
+
|
413 |
+
while game:
|
414 |
+
board = game.board()
|
415 |
+
mainline = list(game.mainline_moves())
|
416 |
+
end_index = len(mainline) - end_move
|
417 |
+
|
418 |
+
for i, move in enumerate(mainline[:end_index]):
|
419 |
+
board.push(move)
|
420 |
+
if start_move <= i:
|
421 |
+
boards.append(board.copy())
|
422 |
+
game = chess.pgn.read_game(pgn)
|
423 |
+
|
424 |
+
return boards
|
src/models
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from loguru import logger
|
5 |
+
|
6 |
+
|
7 |
+
class MultiInputConv(torch.nn.Module):
|
8 |
+
@logger.catch
|
9 |
+
def __init__(self):
|
10 |
+
super().__init__()
|
11 |
+
self.flatten = torch.nn.Flatten()
|
12 |
+
self.conv_long = torch.nn.Sequential(
|
13 |
+
torch.nn.Conv2d(in_channels=12, out_channels=16, kernel_size=15, padding=7, stride=2),
|
14 |
+
torch.nn.LeakyReLU(),
|
15 |
+
torch.nn.Conv2d(in_channels=16, out_channels=4, kernel_size=7, padding=3, stride=2),
|
16 |
+
torch.nn.LeakyReLU(),
|
17 |
+
)
|
18 |
+
self.conv_middle = torch.nn.Sequential(
|
19 |
+
torch.nn.Conv2d(in_channels=12, out_channels=16, kernel_size=9, padding=4, stride=2),
|
20 |
+
torch.nn.LeakyReLU(),
|
21 |
+
torch.nn.Conv2d(in_channels=16, out_channels=4, kernel_size=7, padding=3, stride=2),
|
22 |
+
torch.nn.LeakyReLU(),
|
23 |
+
)
|
24 |
+
self.conv_short = torch.nn.Sequential(
|
25 |
+
torch.nn.Conv2d(in_channels=12, out_channels=16, kernel_size=5, padding=2, stride=2),
|
26 |
+
torch.nn.LeakyReLU(),
|
27 |
+
torch.nn.Conv2d(in_channels=16, out_channels=4, kernel_size=7, padding=3, stride=2),
|
28 |
+
torch.nn.LeakyReLU(),
|
29 |
+
)
|
30 |
+
self.linear_relu_stack = torch.nn.Sequential(
|
31 |
+
torch.nn.Linear(in_features=(4 * 2 * 2) + (4 * 2 * 2) + (4 * 2 * 2) + 1 + 4, out_features=16),
|
32 |
+
torch.nn.LeakyReLU(),
|
33 |
+
torch.nn.Linear(in_features=16, out_features=1),
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
@logger.catch
|
38 |
+
def forward(self, x):
|
39 |
+
board, color, castling = x
|
40 |
+
board = board.float()
|
41 |
+
color = color.float()
|
42 |
+
castling = castling.float()
|
43 |
+
|
44 |
+
long = self.conv_long(board)
|
45 |
+
long = self.flatten(long)
|
46 |
+
|
47 |
+
middle = self.conv_middle(board)
|
48 |
+
middle = self.flatten(middle)
|
49 |
+
|
50 |
+
short = self.conv_short(board)
|
51 |
+
short = self.flatten(short)
|
52 |
+
|
53 |
+
x = torch.cat((long, middle, short, color, castling), dim=1)
|
54 |
+
|
55 |
+
score = self.linear_relu_stack(x)
|
56 |
+
return score
|
57 |
+
|
58 |
+
@logger.catch
|
59 |
+
def model_hash(self) -> str:
|
60 |
+
"""Get the hash of the model."""
|
61 |
+
return hashlib.md5(
|
62 |
+
(str(self.linear_relu_stack) + str(self.flatten)).encode()
|
63 |
+
).hexdigest()
|