Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
from datasets import load_dataset, Dataset | |
from huggingface_hub import HfApi, notebook_login | |
import os | |
import pandas as pd | |
# Initialize detector | |
detector = pipeline("text-classification", model="debojit01/fake-review-detector") | |
# Hugging Face Dataset setup | |
HF_DATASET = "debojit01/fake-review-dataset" | |
TOKEN = os.environ.get("HF_TOKEN") # Set this in Space secrets | |
def predict(text): | |
result = detector(text)[0] | |
if result["label"] == "LABEL_0": # Real | |
return {"Real": result["score"], "Fake": 1 - result["score"]} | |
else: # Fake (LABEL_1) | |
return {"Real": 1 - result["score"], "Fake": result["score"]} | |
def save_feedback(text, prediction, is_correct): | |
"""Save feedback to HF dataset""" | |
try: | |
# Load existing dataset | |
dataset = load_dataset(HF_DATASET)['train'] | |
df = dataset.to_pandas() | |
except: | |
df = pd.DataFrame(columns=["text", "label"]) | |
# Determine correct label | |
predicted_label = "Real" if prediction["Real"] > 0.5 else "Fake" | |
true_label = predicted_label if is_correct else ("Fake" if predicted_label == "Real" else "Real") | |
# Append new data | |
new_row = {"text": text, "label": true_label} | |
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True) | |
# Convert back to dataset and push | |
updated_dataset = Dataset.from_pandas(df) | |
updated_dataset.push_to_hub( | |
HF_DATASET, | |
token=TOKEN, | |
commit_message=f"New feedback added via app" | |
) | |
return "Feedback saved to dataset!" | |
with gr.Blocks() as app: | |
gr.Markdown("## Fake Review Detector") | |
with gr.Row(): | |
review_input = gr.Textbox(label="Enter Review") | |
predict_btn = gr.Button("Predict") | |
output_label = gr.Label(label="Prediction") | |
with gr.Row(visible=False) as feedback_row: | |
feedback_radio = gr.Radio( | |
["Correct", "Incorrect"], | |
label="Is this prediction accurate?" | |
) | |
feedback_btn = gr.Button("Submit Feedback") | |
status_text = gr.Textbox(label="Status", interactive=False) | |
def show_prediction(text): | |
prediction = predict(text) | |
return prediction, gr.Row(visible=True), "" | |
predict_btn.click( | |
show_prediction, | |
inputs=review_input, | |
outputs=[output_label, feedback_row, status_text] | |
) | |
feedback_btn.click( | |
save_feedback, | |
inputs=[review_input, output_label, feedback_radio], | |
outputs=status_text | |
) | |
app.launch() |