Spaces:
Runtime error
Runtime error
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import joblib | |
import matplotlib.pyplot as plt | |
from sklearn.model_selection import train_test_split, RandomizedSearchCV | |
from sklearn.metrics import classification_report | |
from sklearn.metrics import mean_squared_error | |
from sklearn.preprocessing import OneHotEncoder | |
from sklearn.compose import make_column_transformer | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.linear_model import LinearRegression | |
from sklearn.pipeline import make_pipeline | |
from sklearn.pipeline import Pipeline | |
from sklearn.impute import SimpleImputer | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.compose import ColumnTransformer | |
from sklearn.metrics import mean_squared_error, r2_score | |
data = pd.read_csv("/Users/debjanighosh/insurance.csv") | |
target = 'charges' | |
numerical_features = ['age', 'bmi','children'] | |
categorical_features = ['sex','smoker','region'] | |
print("Creating data subsets") | |
X = data[numerical_features + categorical_features] | |
y = data[target] | |
Xtrain, Xtest, ytrain, ytest = train_test_split( | |
X,y, | |
test_size=0.2, | |
random_state=42 | |
) | |
numerical_pipeline = Pipeline([ | |
('imputer',SimpleImputer(strategy='median')), | |
('scaler',StandardScaler()) | |
]) | |
categorical_pipeline = Pipeline([ | |
('imputer',SimpleImputer(strategy='most_frequent')), | |
('onehot',OneHotEncoder(handle_unknown='ignore')) | |
]) | |
preprocessor = make_column_transformer( | |
(numerical_pipeline, numerical_features), | |
(categorical_pipeline, categorical_features) | |
) | |
model_linear_regression = LinearRegression() | |
print ("Estimating Best Model Pipeline") | |
model_pipeline = make_pipeline( | |
preprocessor, | |
model_linear_regression | |
) | |
model_pipeline.fit(Xtrain, ytrain) | |
print("Logging Metrics") | |
print(f"R2 Score:{r2_score(ytest, model_pipeline.predict(Xtest))}") | |
print("Serializing Model") | |
saved_model_path = "model.joblib" | |
joblib.dump(model_pipeline, saved_model_path) | |