ml_python / train.py
debjaninath's picture
Upload 4 files
cb8d2af verified
import numpy as np
import pandas as pd
import seaborn as sns
import joblib
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.metrics import mean_squared_error, r2_score
data = pd.read_csv("/Users/debjanighosh/insurance.csv")
target = 'charges'
numerical_features = ['age', 'bmi','children']
categorical_features = ['sex','smoker','region']
print("Creating data subsets")
X = data[numerical_features + categorical_features]
y = data[target]
Xtrain, Xtest, ytrain, ytest = train_test_split(
X,y,
test_size=0.2,
random_state=42
)
numerical_pipeline = Pipeline([
('imputer',SimpleImputer(strategy='median')),
('scaler',StandardScaler())
])
categorical_pipeline = Pipeline([
('imputer',SimpleImputer(strategy='most_frequent')),
('onehot',OneHotEncoder(handle_unknown='ignore'))
])
preprocessor = make_column_transformer(
(numerical_pipeline, numerical_features),
(categorical_pipeline, categorical_features)
)
model_linear_regression = LinearRegression()
print ("Estimating Best Model Pipeline")
model_pipeline = make_pipeline(
preprocessor,
model_linear_regression
)
model_pipeline.fit(Xtrain, ytrain)
print("Logging Metrics")
print(f"R2 Score:{r2_score(ytest, model_pipeline.predict(Xtest))}")
print("Serializing Model")
saved_model_path = "model.joblib"
joblib.dump(model_pipeline, saved_model_path)