app.py
CHANGED
@@ -11,12 +11,17 @@ _ = load_dotenv(find_dotenv())
|
|
11 |
databricks_token = os.getenv('DATABRICKS_TOKEN')
|
12 |
model_uri = "https://dbc-eb788f31-6c73.cloud.databricks.com/serving-endpoints/Mpt-7b-tester/invocations"
|
13 |
|
14 |
-
def score_model(model_uri, databricks_token,
|
|
|
|
|
|
|
|
|
15 |
headers = {
|
16 |
"Authorization": f"Bearer {databricks_token}",
|
17 |
"Content-Type": "application/json",
|
18 |
}
|
19 |
-
|
|
|
20 |
print("***data_json: ")
|
21 |
|
22 |
print(data_json)
|
|
|
11 |
databricks_token = os.getenv('DATABRICKS_TOKEN')
|
12 |
model_uri = "https://dbc-eb788f31-6c73.cloud.databricks.com/serving-endpoints/Mpt-7b-tester/invocations"
|
13 |
|
14 |
+
def score_model(model_uri, databricks_token, prompt):
|
15 |
+
dataset=pd.DataFrame({
|
16 |
+
"prompt":[prompt],
|
17 |
+
"temperature": [0.5],
|
18 |
+
"max_tokens": [100]})
|
19 |
headers = {
|
20 |
"Authorization": f"Bearer {databricks_token}",
|
21 |
"Content-Type": "application/json",
|
22 |
}
|
23 |
+
ds_dict = {'dataframe_split': dataset.to_dict(orient='split')} if isinstance(dataset, pd.DataFrame) else create_tf_serving_json(dataset)
|
24 |
+
data_json = json.dumps(ds_dict, allow_nan=True)
|
25 |
print("***data_json: ")
|
26 |
|
27 |
print(data_json)
|