app.py
CHANGED
|
@@ -7,48 +7,9 @@ import json
|
|
| 7 |
from dotenv import load_dotenv, find_dotenv
|
| 8 |
_ = load_dotenv(find_dotenv())
|
| 9 |
|
| 10 |
-
|
| 11 |
databricks_token = os.getenv('TENATCH_TOKEN')
|
| 12 |
model_uri = "http://15.152.197.215/v1/completions"
|
| 13 |
-
|
| 14 |
-
def extract_json(gen_text, n_shot_learning=0):
|
| 15 |
-
if(n_shot_learning == -1) :
|
| 16 |
-
start_index = 0
|
| 17 |
-
else :
|
| 18 |
-
start_index = gen_text.index("### Response:\n{") + 14
|
| 19 |
-
if(n_shot_learning > 0) :
|
| 20 |
-
for i in range(0, n_shot_learning):
|
| 21 |
-
gen_text = gen_text[start_index:]
|
| 22 |
-
start_index = gen_text.index("### Response:\n{") + 14
|
| 23 |
-
end_index = gen_text.find("}\n\n### ") + 1
|
| 24 |
-
return gen_text[start_index:end_index]
|
| 25 |
-
|
| 26 |
-
def score_model(model_uri, databricks_token, prompt):
|
| 27 |
-
ds_dict={
|
| 28 |
-
"model": "debisoft/mpt-7b-awq-tester",
|
| 29 |
-
"prompt": prompt,
|
| 30 |
-
"temperature": 0.5,
|
| 31 |
-
"max_tokens": 1000}
|
| 32 |
-
headers = {
|
| 33 |
-
"Authorization": f"Bearer {databricks_token}",
|
| 34 |
-
"Content-Type": "application/json",
|
| 35 |
-
}
|
| 36 |
-
#ds_dict = {'dataframe_split': dataset.to_dict(orient='split')} if isinstance(dataset, pd.DataFrame) else create_tf_serving_json(dataset)
|
| 37 |
-
data_json = json.dumps(ds_dict, allow_nan=True)
|
| 38 |
-
print("***ds_dict: ")
|
| 39 |
-
print(ds_dict)
|
| 40 |
-
print("***data_json: ")
|
| 41 |
-
print(data_json)
|
| 42 |
-
response = requests.request(method='POST', headers=headers, url=model_uri, data=data_json)
|
| 43 |
-
if response.status_code != 200:
|
| 44 |
-
raise Exception(f"Request failed with status {response.status_code}, {response.text}")
|
| 45 |
-
return response.json()
|
| 46 |
-
|
| 47 |
-
def get_completion(prompt):
|
| 48 |
-
return score_model(model_uri, databricks_token, prompt)
|
| 49 |
-
|
| 50 |
-
def greet(input):
|
| 51 |
-
n_shot_learning = f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
| 52 |
|
| 53 |
### Instruction:
|
| 54 |
You are demanding customer
|
|
@@ -95,6 +56,44 @@ I am building an online community to help people to find dates.
|
|
| 95 |
{{"solution": "FindDates.com", "problem": "finding a date", "features": "online community to help people find dates", "target_customer": "people looking for a date", "fg_will_use": "True", "reason_to_use": "I am looking for an online community to help people find dates. FindDates.com meets my needs and I would use it to find my next great date.","fg_will_pay": "True", "reason_to_pay": "I would not pay for it as I am looking for an online community to help people find dates. But for products related to dating, paying for it would be a no-brainer.","fg_will_invest": "False", "reason_to_invest": "There are many online dating platforms already.","score": "40"}}
|
| 96 |
"""
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
sys_msg="You are demanding customer."
|
| 99 |
|
| 100 |
instruction = """Determine the product or solution, the problem being solved, features, target customer that is being discussed in the \
|
|
@@ -121,12 +120,8 @@ Give a score for the product. Format your response as a JSON object with \
|
|
| 121 |
print("***total_prompt:")
|
| 122 |
print(total_prompt)
|
| 123 |
response = get_completion(total_prompt)
|
| 124 |
-
#gen_text = response["predictions"][0]["generated_text"]
|
| 125 |
-
#return json.dumps(extract_json(gen_text, 3))
|
| 126 |
gen_text = response["choices"][0]["text"]
|
| 127 |
-
#return gen_text
|
| 128 |
return json.dumps(extract_json(gen_text, -1))
|
| 129 |
-
#return json.dumps(response)
|
| 130 |
|
| 131 |
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 132 |
#iface.launch()
|
|
|
|
| 7 |
from dotenv import load_dotenv, find_dotenv
|
| 8 |
_ = load_dotenv(find_dotenv())
|
| 9 |
|
|
|
|
| 10 |
databricks_token = os.getenv('TENATCH_TOKEN')
|
| 11 |
model_uri = "http://15.152.197.215/v1/completions"
|
| 12 |
+
n_shot_learning = f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
### Instruction:
|
| 15 |
You are demanding customer
|
|
|
|
| 56 |
{{"solution": "FindDates.com", "problem": "finding a date", "features": "online community to help people find dates", "target_customer": "people looking for a date", "fg_will_use": "True", "reason_to_use": "I am looking for an online community to help people find dates. FindDates.com meets my needs and I would use it to find my next great date.","fg_will_pay": "True", "reason_to_pay": "I would not pay for it as I am looking for an online community to help people find dates. But for products related to dating, paying for it would be a no-brainer.","fg_will_invest": "False", "reason_to_invest": "There are many online dating platforms already.","score": "40"}}
|
| 57 |
"""
|
| 58 |
|
| 59 |
+
def extract_json(gen_text, n_shot_learning=0):
|
| 60 |
+
if(n_shot_learning == -1) :
|
| 61 |
+
start_index = 0
|
| 62 |
+
else :
|
| 63 |
+
start_index = gen_text.index("### Response:\n{") + 14
|
| 64 |
+
if(n_shot_learning > 0) :
|
| 65 |
+
for i in range(0, n_shot_learning):
|
| 66 |
+
gen_text = gen_text[start_index:]
|
| 67 |
+
start_index = gen_text.index("### Response:\n{") + 14
|
| 68 |
+
end_index = gen_text.find("}\n\n### ") + 1
|
| 69 |
+
return gen_text[start_index:end_index]
|
| 70 |
+
|
| 71 |
+
def score_model(model_uri, databricks_token, prompt):
|
| 72 |
+
ds_dict={
|
| 73 |
+
"model": "debisoft/mpt-7b-awq-tester",
|
| 74 |
+
"prompt": prompt,
|
| 75 |
+
"temperature": 0.5,
|
| 76 |
+
"max_tokens": 1000}
|
| 77 |
+
headers = {
|
| 78 |
+
"Authorization": f"Bearer {databricks_token}",
|
| 79 |
+
"Content-Type": "application/json",
|
| 80 |
+
}
|
| 81 |
+
#ds_dict = {'dataframe_split': dataset.to_dict(orient='split')} if isinstance(dataset, pd.DataFrame) else create_tf_serving_json(dataset)
|
| 82 |
+
data_json = json.dumps(ds_dict, allow_nan=True)
|
| 83 |
+
print("***ds_dict: ")
|
| 84 |
+
print(ds_dict)
|
| 85 |
+
print("***data_json: ")
|
| 86 |
+
print(data_json)
|
| 87 |
+
response = requests.request(method='POST', headers=headers, url=model_uri, data=data_json)
|
| 88 |
+
if response.status_code != 200:
|
| 89 |
+
raise Exception(f"Request failed with status {response.status_code}, {response.text}")
|
| 90 |
+
return response.json()
|
| 91 |
+
|
| 92 |
+
def get_completion(prompt):
|
| 93 |
+
return score_model(model_uri, databricks_token, prompt)
|
| 94 |
+
|
| 95 |
+
def greet(input):
|
| 96 |
+
|
| 97 |
sys_msg="You are demanding customer."
|
| 98 |
|
| 99 |
instruction = """Determine the product or solution, the problem being solved, features, target customer that is being discussed in the \
|
|
|
|
| 120 |
print("***total_prompt:")
|
| 121 |
print(total_prompt)
|
| 122 |
response = get_completion(total_prompt)
|
|
|
|
|
|
|
| 123 |
gen_text = response["choices"][0]["text"]
|
|
|
|
| 124 |
return json.dumps(extract_json(gen_text, -1))
|
|
|
|
| 125 |
|
| 126 |
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 127 |
#iface.launch()
|