|  | import os | 
					
						
						|  | from dataclasses import dataclass, field | 
					
						
						|  |  | 
					
						
						|  | from coqpit import Coqpit | 
					
						
						|  | from trainer import TrainerArgs, get_last_checkpoint | 
					
						
						|  | from trainer.logging import logger_factory | 
					
						
						|  | from trainer.logging.console_logger import ConsoleLogger | 
					
						
						|  |  | 
					
						
						|  | from TTS.config import load_config, register_config | 
					
						
						|  | from TTS.tts.utils.text.characters import parse_symbols | 
					
						
						|  | from TTS.utils.generic_utils import get_experiment_folder_path, get_git_branch | 
					
						
						|  | from TTS.utils.io import copy_model_files | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class TrainArgs(TrainerArgs): | 
					
						
						|  | config_path: str = field(default=None, metadata={"help": "Path to the config file."}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def getarguments(): | 
					
						
						|  | train_config = TrainArgs() | 
					
						
						|  | parser = train_config.init_argparse(arg_prefix="") | 
					
						
						|  | return parser | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def process_args(args, config=None): | 
					
						
						|  | """Process parsed comand line arguments and initialize the config if not provided. | 
					
						
						|  | Args: | 
					
						
						|  | args (argparse.Namespace or dict like): Parsed input arguments. | 
					
						
						|  | config (Coqpit): Model config. If none, it is generated from `args`. Defaults to None. | 
					
						
						|  | Returns: | 
					
						
						|  | c (TTS.utils.io.AttrDict): Config paramaters. | 
					
						
						|  | out_path (str): Path to save models and logging. | 
					
						
						|  | audio_path (str): Path to save generated test audios. | 
					
						
						|  | c_logger (TTS.utils.console_logger.ConsoleLogger): Class that does | 
					
						
						|  | logging to the console. | 
					
						
						|  | dashboard_logger (WandbLogger or TensorboardLogger): Class that does the dashboard Logging | 
					
						
						|  | TODO: | 
					
						
						|  | - Interactive config definition. | 
					
						
						|  | """ | 
					
						
						|  | if isinstance(args, tuple): | 
					
						
						|  | args, coqpit_overrides = args | 
					
						
						|  | if args.continue_path: | 
					
						
						|  |  | 
					
						
						|  | experiment_path = args.continue_path | 
					
						
						|  | args.config_path = os.path.join(args.continue_path, "config.json") | 
					
						
						|  | args.restore_path, best_model = get_last_checkpoint(args.continue_path) | 
					
						
						|  | if not args.best_path: | 
					
						
						|  | args.best_path = best_model | 
					
						
						|  |  | 
					
						
						|  | if config is None: | 
					
						
						|  | if args.config_path: | 
					
						
						|  |  | 
					
						
						|  | config = load_config(args.config_path) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | from TTS.config.shared_configs import BaseTrainingConfig | 
					
						
						|  |  | 
					
						
						|  | config_base = BaseTrainingConfig() | 
					
						
						|  | config_base.parse_known_args(coqpit_overrides) | 
					
						
						|  | config = register_config(config_base.model)() | 
					
						
						|  |  | 
					
						
						|  | config.parse_known_args(coqpit_overrides, relaxed_parser=True) | 
					
						
						|  | experiment_path = args.continue_path | 
					
						
						|  | if not experiment_path: | 
					
						
						|  | experiment_path = get_experiment_folder_path(config.output_path, config.run_name) | 
					
						
						|  | audio_path = os.path.join(experiment_path, "test_audios") | 
					
						
						|  | config.output_log_path = experiment_path | 
					
						
						|  |  | 
					
						
						|  | dashboard_logger = None | 
					
						
						|  | if args.rank == 0: | 
					
						
						|  | new_fields = {} | 
					
						
						|  | if args.restore_path: | 
					
						
						|  | new_fields["restore_path"] = args.restore_path | 
					
						
						|  | new_fields["github_branch"] = get_git_branch() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if config.has("characters") and config.characters is None: | 
					
						
						|  | used_characters = parse_symbols() | 
					
						
						|  | new_fields["characters"] = used_characters | 
					
						
						|  | copy_model_files(config, experiment_path, new_fields) | 
					
						
						|  | dashboard_logger = logger_factory(config, experiment_path) | 
					
						
						|  | c_logger = ConsoleLogger() | 
					
						
						|  | return config, experiment_path, audio_path, c_logger, dashboard_logger | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def init_arguments(): | 
					
						
						|  | train_config = TrainArgs() | 
					
						
						|  | parser = train_config.init_argparse(arg_prefix="") | 
					
						
						|  | return parser | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def init_training(config: Coqpit = None): | 
					
						
						|  | """Initialization of a training run.""" | 
					
						
						|  | parser = init_arguments() | 
					
						
						|  | args = parser.parse_known_args() | 
					
						
						|  | config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = process_args(args, config) | 
					
						
						|  | return args[0], config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger | 
					
						
						|  |  |