Spaces:
Sleeping
Sleeping
# coding: utf-8 | |
import os.path as osp | |
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) | |
import torch | |
import numpy as np | |
import onnxruntime | |
from .timer import Timer | |
from .rprint import rlog | |
from .crop import crop_image, _transform_pts | |
def make_abs_path(fn): | |
return osp.join(osp.dirname(osp.realpath(__file__)), fn) | |
def to_ndarray(obj): | |
if isinstance(obj, torch.Tensor): | |
return obj.cpu().numpy() | |
elif isinstance(obj, np.ndarray): | |
return obj | |
else: | |
return np.array(obj) | |
class LandmarkRunner(object): | |
"""landmark runner""" | |
def __init__(self, **kwargs): | |
ckpt_path = kwargs.get('ckpt_path') | |
onnx_provider = 'cpu' #run on cpu for it to work with ZeroGPU // kwargs.get('onnx_provider', 'cuda') # 默认用cuda | |
device_id = kwargs.get('device_id', 0) | |
self.dsize = kwargs.get('dsize', 224) | |
self.timer = Timer() | |
if onnx_provider.lower() == 'cuda': | |
self.session = onnxruntime.InferenceSession( | |
ckpt_path, providers=[ | |
('CUDAExecutionProvider', {'device_id': device_id}) | |
] | |
) | |
else: | |
opts = onnxruntime.SessionOptions() | |
opts.intra_op_num_threads = 4 # 默认线程数为 4 | |
self.session = onnxruntime.InferenceSession( | |
ckpt_path, providers=['CPUExecutionProvider'], | |
sess_options=opts | |
) | |
def _run(self, inp): | |
out = self.session.run(None, {'input': inp}) | |
return out | |
def run(self, img_rgb: np.ndarray, lmk=None): | |
if lmk is not None: | |
crop_dct = crop_image(img_rgb, lmk, dsize=self.dsize, scale=1.5, vy_ratio=-0.1) | |
img_crop_rgb = crop_dct['img_crop'] | |
else: | |
img_crop_rgb = cv2.resize(img_rgb, (self.dsize, self.dsize)) | |
scale = max(img_rgb.shape[:2]) / self.dsize | |
crop_dct = { | |
'M_c2o': np.array([ | |
[scale, 0., 0.], | |
[0., scale, 0.], | |
[0., 0., 1.], | |
], dtype=np.float32), | |
} | |
inp = (img_crop_rgb.astype(np.float32) / 255.).transpose(2, 0, 1)[None, ...] # HxWx3 (BGR) -> 1x3xHxW (RGB!) | |
out_lst = self._run(inp) | |
out_pts = out_lst[2] | |
pts = to_ndarray(out_pts[0]).reshape(-1, 2) * self.dsize # scale to 0-224 | |
pts = _transform_pts(pts, M=crop_dct['M_c2o']) | |
return { | |
'pts': pts, # 2d landmarks 203 points | |
} | |
def warmup(self): | |
# 构造dummy image进行warmup | |
self.timer.tic() | |
dummy_image = np.zeros((1, 3, self.dsize, self.dsize), dtype=np.float32) | |
_ = self._run(dummy_image) | |
elapse = self.timer.toc() | |
rlog(f'LandmarkRunner warmup time: {elapse:.3f}s') | |