deanna-emery commited on
Commit
3005acd
·
1 Parent(s): ef95c58
Files changed (1) hide show
  1. app.py +19 -12
app.py CHANGED
@@ -2,9 +2,6 @@ import cv2
2
  import numpy as np
3
  import gradio as gr
4
 
5
- # import os
6
- # os.chdir('modeling')
7
-
8
  import tensorflow as tf, tf_keras
9
  import tensorflow_hub as hub
10
  from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
@@ -18,7 +15,7 @@ movinet_model = tf_keras.models.load_model(movinet_path)
18
  movinet_model.trainable = False
19
 
20
  tokenizer = AutoTokenizer.from_pretrained("t5-base")
21
- t5_model = TFAutoModelForSeq2SeqLM.from_pretrained("deanna-emery/ASL_t5_word_epoch15_1204")
22
  t5_model.trainable = False
23
 
24
  def crop_center_square(frame):
@@ -71,24 +68,34 @@ def translate(video_file):
71
 
72
  translation = tokenizer.batch_decode(tokens, skip_special_tokens=True)
73
 
74
- # Return dict {label:pred}
75
  return {"translation":translation}
76
 
77
  # Gradio App config
78
  title = "ASL Translation (MoViNet + T5)"
79
  examples = [
80
- ['videos/all.mp4', 'all'],
81
- ['videos/white.mp4', 'white'],
82
- ['videos/before.mp4', 'before'],
83
- ['videos/blue.mp4', 'blue'],
84
  ['videos/no.mp4', 'no'],
85
- ['videos/accident2.mp4', 'accident']
86
  ]
87
 
 
 
 
 
 
 
 
 
 
88
  # Gradio App interface
89
  gr.Interface(fn=translate,
90
- inputs="video",
91
  outputs="text",
92
  allow_flagging="never",
93
  title=title,
94
- examples=examples).launch()
 
 
 
2
  import numpy as np
3
  import gradio as gr
4
 
 
 
 
5
  import tensorflow as tf, tf_keras
6
  import tensorflow_hub as hub
7
  from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
 
15
  movinet_model.trainable = False
16
 
17
  tokenizer = AutoTokenizer.from_pretrained("t5-base")
18
+ t5_model = TFAutoModelForSeq2SeqLM.from_pretrained("deanna-emery/ASL_t5_movinet_sentence")
19
  t5_model.trainable = False
20
 
21
  def crop_center_square(frame):
 
68
 
69
  translation = tokenizer.batch_decode(tokens, skip_special_tokens=True)
70
 
 
71
  return {"translation":translation}
72
 
73
  # Gradio App config
74
  title = "ASL Translation (MoViNet + T5)"
75
  examples = [
76
+ ["videos/My second ASL professor's name was Will White.mp4", "My second ASL professor's name was Will White"],
77
+ ["videos/Rainbows rainbows high up in the sky.mp4", "Rainbows rainbows high up in the sky"],
78
+ ['videos/You are my sunshine.mp4', 'You are my sunshine'],
79
+ ['videos/scrub your hands for at least 20 seconds.mp4', 'scrub your hands for at least 20 seconds'],
80
  ['videos/no.mp4', 'no'],
81
+ ['videos/before.mp4', 'before']
82
  ]
83
 
84
+ description = "Gradio demo of word-level sign language classification using I3D model pretrained on the WLASL video dataset. " \
85
+ "WLASL is a large-scale dataset containing more than 2000 words in American Sign Language. " \
86
+ "Examples used in the demo are videos from the the test subset. " \
87
+ "Note that WLASL100 contains 100 words while WLASL2000 contains 2000."
88
+
89
+
90
+ article = "More information about the trained models can be found <a href=https://github.com/deanna-emery/ASL-Translator/>here</a>."
91
+
92
+
93
  # Gradio App interface
94
  gr.Interface(fn=translate,
95
+ inputs=[gr.Video(label="Video (*.mp4)"),gr.Radio(label='Caption')],
96
  outputs="text",
97
  allow_flagging="never",
98
  title=title,
99
+ description=description,
100
+ examples=examples,
101
+ article=article).launch()