Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for box_matcher.py.""" | |
import tensorflow as tf, tf_keras | |
from official.vision.ops import box_matcher | |
class BoxMatcherTest(tf.test.TestCase): | |
def test_box_matcher_unbatched(self): | |
sim_matrix = tf.constant( | |
[[0.04, 0, 0, 0], | |
[0, 0, 1., 0]], | |
dtype=tf.float32) | |
fg_threshold = 0.5 | |
bg_thresh_hi = 0.2 | |
bg_thresh_lo = 0.0 | |
matcher = box_matcher.BoxMatcher( | |
thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold], | |
indicators=[-3, -2, -1, 1]) | |
match_indices, match_indicators = matcher(sim_matrix) | |
positive_matches = tf.greater_equal(match_indicators, 0) | |
negative_matches = tf.equal(match_indicators, -2) | |
self.assertAllEqual( | |
positive_matches.numpy(), [False, True]) | |
self.assertAllEqual( | |
negative_matches.numpy(), [True, False]) | |
self.assertAllEqual( | |
match_indices.numpy(), [0, 2]) | |
self.assertAllEqual( | |
match_indicators.numpy(), [-2, 1]) | |
def test_box_matcher_batched(self): | |
sim_matrix = tf.constant( | |
[[[0.04, 0, 0, 0], | |
[0, 0, 1., 0]]], | |
dtype=tf.float32) | |
fg_threshold = 0.5 | |
bg_thresh_hi = 0.2 | |
bg_thresh_lo = 0.0 | |
matcher = box_matcher.BoxMatcher( | |
thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold], | |
indicators=[-3, -2, -1, 1]) | |
match_indices, match_indicators = matcher(sim_matrix) | |
positive_matches = tf.greater_equal(match_indicators, 0) | |
negative_matches = tf.equal(match_indicators, -2) | |
self.assertAllEqual( | |
positive_matches.numpy(), [[False, True]]) | |
self.assertAllEqual( | |
negative_matches.numpy(), [[True, False]]) | |
self.assertAllEqual( | |
match_indices.numpy(), [[0, 2]]) | |
self.assertAllEqual( | |
match_indicators.numpy(), [[-2, 1]]) | |
if __name__ == '__main__': | |
tf.test.main() | |