Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for Keras-based masked softmax layer.""" | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import masked_softmax | |
class MaskedSoftmaxLayerTest(tf.test.TestCase): | |
def test_non_masked_softmax(self): | |
test_layer = masked_softmax.MaskedSoftmax() | |
input_tensor = tf_keras.Input(shape=(4, 8)) | |
output = test_layer(input_tensor) | |
model = tf_keras.Model(input_tensor, output) | |
input_data = 10 * np.random.random_sample((3, 4, 8)) | |
output_data = model.predict(input_data) | |
expected_data = tf.nn.softmax(input_data) | |
self.assertAllClose(expected_data, output_data) | |
def test_masked_softmax(self): | |
test_layer = masked_softmax.MaskedSoftmax() | |
input_tensor = tf_keras.Input(shape=(4, 8)) | |
mask_tensor = tf_keras.Input(shape=(4, 8)) | |
output = test_layer(input_tensor, mask_tensor) | |
model = tf_keras.Model([input_tensor, mask_tensor], output) | |
input_data = 10 * np.random.random_sample((3, 4, 8)) | |
mask_data = np.random.randint(2, size=(3, 4, 8)) | |
output_data = model.predict([input_data, mask_data]) | |
expected_zeros = np.greater(mask_data, 0) | |
is_zeros = np.greater(output_data, 0) | |
self.assertAllEqual(expected_zeros, is_zeros) | |
def test_masked_softmax_with_none_mask(self): | |
test_layer = masked_softmax.MaskedSoftmax() | |
input_tensor = tf_keras.Input(shape=(4, 8)) | |
output = test_layer(input_tensor, None) | |
model = tf_keras.Model(input_tensor, output) | |
input_data = 10 * np.random.random_sample((3, 4, 8)) | |
output_data = model.predict(input_data) | |
expected_data = tf.nn.softmax(input_data) | |
self.assertAllClose(expected_data, output_data) | |
def test_softmax_with_axes_expansion(self): | |
test_layer = masked_softmax.MaskedSoftmax(mask_expansion_axes=[1]) | |
input_tensor = tf_keras.Input(shape=(4, 8)) | |
mask_tensor = tf_keras.Input(shape=(8)) | |
output = test_layer(input_tensor, mask_tensor) | |
model = tf_keras.Model([input_tensor, mask_tensor], output) | |
input_data = 10 * np.random.random_sample((3, 4, 8)) | |
mask_data = np.random.randint(2, size=(3, 8)) | |
output_data = model.predict([input_data, mask_data]) | |
expanded_mask = np.expand_dims(mask_data, axis=1) * np.ones_like(input_data) | |
expected_zeros = np.greater(expanded_mask, 0) | |
is_zeros = np.greater(output_data, 0) | |
self.assertAllEqual(expected_zeros, is_zeros) | |
def test_masked_softmax_high_dims(self): | |
test_layer = masked_softmax.MaskedSoftmax( | |
mask_expansion_axes=[1], normalization_axes=[6, 7]) | |
input_shape = [2, 3, 4, 5, 6, 7, 8] | |
mask_shape = [5, 6, 7, 8] | |
input_tensor = tf_keras.Input(shape=input_shape) | |
mask_tensor = tf_keras.Input(shape=mask_shape) | |
output = test_layer(input_tensor, mask_tensor) | |
model = tf_keras.Model([input_tensor, mask_tensor], output) | |
input_data = 10 * np.random.random_sample([3] + input_shape) | |
mask_data = np.random.randint(2, size=[3] + mask_shape) | |
output_data = model.predict([input_data, mask_data]) | |
expanded_mask = np.expand_dims(mask_data, axis=1) | |
expanded_mask = np.expand_dims(expanded_mask, axis=1) | |
expanded_mask = np.expand_dims( | |
expanded_mask, axis=1) * np.ones_like(input_data) | |
expected_zeros = np.greater(expanded_mask, 0) | |
is_zeros = np.greater(output_data, 0) | |
self.assertAllEqual(expected_zeros, is_zeros) | |
def test_serialize_deserialize(self): | |
test_layer = masked_softmax.MaskedSoftmax( | |
mask_expansion_axes=[1], normalization_axes=[6, 7]) | |
new_layer = masked_softmax.MaskedSoftmax.from_config( | |
test_layer.get_config()) | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(test_layer.get_config(), new_layer.get_config()) | |
if __name__ == '__main__': | |
tf.test.main() | |