Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for official.nlp.projects.bigbird.attention.""" | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import bigbird_attention as attention | |
class BigbirdAttentionTest(tf.test.TestCase): | |
def test_attention(self): | |
num_heads = 12 | |
key_dim = 64 | |
seq_length = 1024 | |
batch_size = 2 | |
block_size = 64 | |
mask_layer = attention.BigBirdMasks(block_size=block_size) | |
encoder_inputs_mask = tf.zeros((batch_size, seq_length), dtype=tf.int32) | |
test_layer = attention.BigBirdAttention( | |
num_heads=num_heads, | |
key_dim=key_dim, | |
from_block_size=block_size, | |
to_block_size=block_size, | |
seed=0) | |
query = tf.random.normal( | |
shape=(batch_size, seq_length, key_dim)) | |
masks = mask_layer(query, tf.cast(encoder_inputs_mask, dtype=tf.float64)) | |
value = query | |
output = test_layer( | |
query=query, | |
value=value, | |
attention_mask=masks) | |
self.assertEqual(output.shape, [batch_size, seq_length, key_dim]) | |
def test_config(self): | |
num_heads = 12 | |
key_dim = 64 | |
block_size = 64 | |
test_layer = attention.BigBirdAttention( | |
num_heads=num_heads, | |
key_dim=key_dim, | |
from_block_size=block_size, | |
to_block_size=block_size, | |
seed=0) | |
print(test_layer.get_config()) | |
new_layer = attention.BigBirdAttention.from_config( | |
test_layer.get_config()) | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(test_layer.get_config(), new_layer.get_config()) | |
if __name__ == '__main__': | |
tf.test.main() | |