Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Dataset loader for the pre-training with dynamic sequence length.""" | |
from typing import Optional, Tuple | |
import dataclasses | |
import tensorflow as tf, tf_keras | |
from official.core import config_definitions as cfg | |
from official.core import input_reader | |
from official.nlp.data import data_loader_factory | |
from official.nlp.data import pretrain_dataloader | |
class BertPretrainDataConfig(cfg.DataConfig): | |
"""Data config for BERT pretraining task (tasks/masked_lm).""" | |
input_path: str = '' | |
global_batch_size: int = 512 | |
is_training: bool = True | |
seq_bucket_lengths: Tuple[int, ...] = (128, 256, 384, 512,) | |
# TODO(rxsang): `seq_bucket_window_scale` is only useful when round robin | |
# tf.data service is disabled. Deprecate this flag once we always enable round | |
# robin tf.data service. | |
seq_bucket_window_scale: int = 8 | |
use_next_sentence_label: bool = True | |
use_position_id: bool = False | |
deterministic: bool = False | |
enable_tf_data_service: bool = False | |
enable_round_robin_tf_data_service: bool = False | |
tf_data_service_job_name: str = 'bert_pretrain' | |
use_v2_feature_names: bool = False | |
class PretrainingDynamicDataLoader(pretrain_dataloader.BertPretrainDataLoader): | |
"""Dataset loader for bert-style pretraining with dynamic sequenece length. | |
Bucketizes the input id features by the seq_bucket_lengths and features are | |
padded to the bucket boundaries. The mask features are usually short than | |
input id features and can also be dynamic. We require the mask feature lengths | |
within a bucket must be the same. For example, with [128, 256] buckets, | |
the mask features for bucket 128 should always have the length as X and | |
features for bucket 256 should always have the length as Y. | |
The dataloader does not filter out empty masks. Make sure to handle this | |
in the model. | |
""" | |
def __init__(self, params): | |
self._params = params | |
if len(params.seq_bucket_lengths) < 1: | |
raise ValueError('The seq_bucket_lengths cannot be empty.') | |
self._seq_bucket_lengths = params.seq_bucket_lengths | |
self._seq_bucket_window_scale = params.seq_bucket_window_scale | |
self._global_batch_size = params.global_batch_size | |
self._use_next_sentence_label = params.use_next_sentence_label | |
self._use_position_id = params.use_position_id | |
self._drop_remainder = params.drop_remainder | |
self._enable_tf_data_service = params.enable_tf_data_service | |
self._enable_round_robin_tf_data_service = ( | |
params.enable_round_robin_tf_data_service) | |
self._mask_keys = [ | |
'masked_lm_positions', 'masked_lm_ids', 'masked_lm_weights' | |
] | |
def _decode(self, record: tf.Tensor): | |
"""Decodes a serialized tf.Example.""" | |
name_to_features = { | |
'input_mask': tf.io.VarLenFeature(tf.int64), | |
'masked_lm_positions': tf.io.VarLenFeature(tf.int64), | |
'masked_lm_ids': tf.io.VarLenFeature(tf.int64), | |
'masked_lm_weights': tf.io.VarLenFeature(tf.float32), | |
} | |
if self._params.use_v2_feature_names: | |
input_ids_key = 'input_word_ids' | |
segment_key = 'input_type_ids' | |
name_to_features.update({ | |
input_ids_key: tf.io.VarLenFeature(tf.int64), | |
segment_key: tf.io.VarLenFeature(tf.int64), | |
}) | |
else: | |
input_ids_key = 'input_ids' | |
segment_key = 'segment_ids' | |
name_to_features.update({ | |
input_ids_key: tf.io.VarLenFeature(tf.int64), | |
segment_key: tf.io.VarLenFeature(tf.int64), | |
}) | |
if self._use_next_sentence_label: | |
name_to_features['next_sentence_labels'] = tf.io.FixedLenFeature([1], | |
tf.int64) | |
dynamic_keys = [input_ids_key, 'input_mask', segment_key] | |
if self._use_position_id: | |
name_to_features['position_ids'] = tf.io.VarLenFeature(tf.int64) | |
dynamic_keys.append('position_ids') | |
example = tf.io.parse_single_example(record, name_to_features) | |
for key in dynamic_keys + self._mask_keys: | |
example[key] = tf.sparse.to_dense(example[key]) | |
# Truncate padded data after the first non pad in the | |
# sequence length dimension. | |
# Pad before the first non pad from the back should not be removed. | |
mask = tf.math.greater( | |
tf.math.cumsum(example[input_ids_key], reverse=True), 0) | |
for key in dynamic_keys: | |
example[key] = tf.boolean_mask(example[key], mask) | |
# masked_lm_ids should be 0 padded. | |
# Change mask features to -1 padding so that we can differentiate | |
# padding from data or from bucketizing. | |
mask = tf.math.not_equal(example['masked_lm_ids'], 0) | |
example['masked_lm_ids'] = tf.where( | |
mask, example['masked_lm_ids'], | |
-tf.ones(tf.shape(example['masked_lm_ids']), dtype=example[key].dtype)) | |
# tf.Example only supports tf.int64, but the TPU only supports tf.int32. | |
# So cast all int64 to int32. | |
# tf.data service uses dataset graph fingerprint to distinguish input | |
# pipeline jobs, thus we sort the keys here to make sure they are generated | |
# in a deterministic order each time the dataset function is traced. | |
for name in sorted(list(example.keys())): | |
t = example[name] | |
if t.dtype == tf.int64: | |
t = tf.cast(t, tf.int32) | |
example[name] = t | |
return example | |
def _bucketize_and_batch( | |
self, | |
dataset, | |
input_context: Optional[tf.distribute.InputContext] = None): | |
"""Bucketize by sequence length and batch the datasets.""" | |
per_replica_batch_size = input_context.get_per_replica_batch_size( | |
self._global_batch_size) if input_context else self._global_batch_size | |
def element_length_func(example, seq_len_dim): | |
return tf.shape(example['input_word_ids'])[seq_len_dim] | |
bucket_boundaries = [length + 1 for length in self._seq_bucket_lengths] | |
bucket_batch_sizes = [per_replica_batch_size] * (len(bucket_boundaries) + 1) | |
# Bucketize and batch the dataset with per replica batch size first. | |
dataset = dataset.apply( | |
tf.data.experimental.bucket_by_sequence_length( | |
lambda example: tf.cast(element_length_func(example, 0), tf.int32), | |
bucket_boundaries, | |
bucket_batch_sizes, | |
pad_to_bucket_boundary=True, | |
drop_remainder=self._drop_remainder)) | |
if input_context: | |
window_size = input_context.num_replicas_in_sync | |
if self._enable_tf_data_service and ( | |
not self._enable_round_robin_tf_data_service): | |
# If tf.data service is enabled but round-robin behavior is not enabled, | |
# different TPU workers may fetch data from one tf.data service worker | |
# in different speed. We set the window size to be | |
# `seq_bucket_window_scale` larger to leave buffer if some workers are | |
# fetching data faster than others, so all the data within the same | |
# global batch can still have more chances to be in the same bucket. | |
window_size *= self._seq_bucket_window_scale | |
# Group `num_replicas_in_sync` batches from same bucket together, so all | |
# replicas can get the same sequence length for one global step. | |
dataset = dataset.apply( | |
tf.data.experimental.group_by_window( | |
key_func=lambda example: tf.cast( # pylint: disable=g-long-lambda | |
element_length_func(example, 1), tf.int64), | |
reduce_func=lambda _, x: tf.data.Dataset.from_tensors(x), | |
window_size=window_size)) | |
dataset = dataset.flat_map(lambda x: x) | |
def _remove_pads_from_bucketize(features): | |
# All mask features must have the same effective length. | |
# The real masked ids padding token is -1 and 0 comes from | |
# bucket_by_sequence_length. | |
mask = tf.math.not_equal(features['masked_lm_ids'], 0) | |
mask_per_example = tf.math.reduce_sum(tf.cast(mask, tf.int32), axis=1) | |
normalized = tf.cast( | |
mask_per_example / tf.math.reduce_max(mask_per_example), tf.int32) | |
assert_op = tf.debugging.assert_equal( | |
tf.math.reduce_sum(normalized), per_replica_batch_size, | |
'Number of non padded mask tokens is not the same for each example ' | |
'in the same sequence length.') | |
with tf.control_dependencies([assert_op]): | |
for key in self._mask_keys: | |
features[key] = tf.reshape( | |
tf.boolean_mask( | |
features[key], mask), [per_replica_batch_size, -1]) | |
# Revert masked_lm_ids to be 0-padded. | |
mask = tf.math.not_equal(features['masked_lm_ids'], -1) | |
features['masked_lm_ids'] = tf.where( | |
mask, features['masked_lm_ids'], | |
tf.zeros( | |
tf.shape(features['masked_lm_ids']), | |
dtype=features['masked_lm_ids'].dtype)) | |
return features | |
dataset = dataset.map(_remove_pads_from_bucketize) | |
return dataset | |
def load(self, input_context: Optional[tf.distribute.InputContext] = None): | |
"""Returns a tf.dataset.Dataset.""" | |
reader = input_reader.InputReader( | |
params=self._params, | |
decoder_fn=self._decode, | |
parser_fn=self._parse, | |
transform_and_batch_fn=self._bucketize_and_batch) | |
return reader.read(input_context) | |