Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for layers in Transformer.""" | |
import tensorflow as tf, tf_keras | |
from official.legacy.transformer import attention_layer | |
from official.legacy.transformer import embedding_layer | |
from official.legacy.transformer import ffn_layer | |
from official.legacy.transformer import metrics | |
class TransformerLayersTest(tf.test.TestCase): | |
def test_attention_layer(self): | |
hidden_size = 64 | |
num_heads = 4 | |
dropout = 0.5 | |
dim_per_head = hidden_size // num_heads | |
layer = attention_layer.SelfAttention(hidden_size, num_heads, dropout) | |
self.assertDictEqual( | |
layer.get_config(), { | |
"hidden_size": hidden_size, | |
"num_heads": num_heads, | |
"attention_dropout": dropout, | |
}) | |
length = 2 | |
x = tf.ones([1, length, hidden_size]) | |
bias = tf.ones([1]) | |
cache = { | |
"k": tf.zeros([1, 0, num_heads, dim_per_head]), | |
"v": tf.zeros([1, 0, num_heads, dim_per_head]), | |
} | |
y = layer(x, bias, training=True, cache=cache) | |
self.assertEqual(y.shape, ( | |
1, | |
length, | |
64, | |
)) | |
self.assertEqual(cache["k"].shape, ( | |
1, | |
length, | |
num_heads, | |
dim_per_head, | |
)) | |
self.assertEqual(cache["v"].shape, ( | |
1, | |
length, | |
num_heads, | |
dim_per_head, | |
)) | |
def test_embedding_shared_weights(self): | |
vocab_size = 50 | |
hidden_size = 64 | |
length = 2 | |
layer = embedding_layer.EmbeddingSharedWeights(vocab_size, hidden_size) | |
self.assertDictEqual(layer.get_config(), { | |
"vocab_size": 50, | |
"hidden_size": 64, | |
}) | |
idx = tf.ones([1, length], dtype="int32") | |
y = layer(idx) | |
self.assertEqual(y.shape, ( | |
1, | |
length, | |
hidden_size, | |
)) | |
x = tf.ones([1, length, hidden_size]) | |
output = layer(x, "linear") | |
self.assertEqual(output.shape, ( | |
1, | |
length, | |
vocab_size, | |
)) | |
def test_feed_forward_network(self): | |
hidden_size = 64 | |
filter_size = 32 | |
relu_dropout = 0.5 | |
layer = ffn_layer.FeedForwardNetwork(hidden_size, filter_size, relu_dropout) | |
self.assertDictEqual( | |
layer.get_config(), { | |
"hidden_size": hidden_size, | |
"filter_size": filter_size, | |
"relu_dropout": relu_dropout, | |
}) | |
length = 2 | |
x = tf.ones([1, length, hidden_size]) | |
y = layer(x, training=True) | |
self.assertEqual(y.shape, ( | |
1, | |
length, | |
hidden_size, | |
)) | |
def test_metric_layer(self): | |
vocab_size = 50 | |
logits = tf_keras.layers.Input((None, vocab_size), | |
dtype="float32", | |
name="logits") | |
targets = tf_keras.layers.Input((None,), dtype="int64", name="targets") | |
output_logits = metrics.MetricLayer(vocab_size)([logits, targets]) | |
self.assertEqual(output_logits.shape.as_list(), [ | |
None, | |
None, | |
vocab_size, | |
]) | |
if __name__ == "__main__": | |
tf.test.main() | |