Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Base class for model export.""" | |
from typing import Dict, Optional, Text, Callable, Any, Union | |
import tensorflow as tf, tf_keras | |
from official.core import export_base | |
class ExportModule(export_base.ExportModule): | |
"""Base Export Module.""" | |
def __init__(self, | |
params, | |
model: tf_keras.Model, | |
input_signature: Union[tf.TensorSpec, Dict[str, tf.TensorSpec]], | |
preprocessor: Optional[Callable[..., Any]] = None, | |
inference_step: Optional[Callable[..., Any]] = None, | |
postprocessor: Optional[Callable[..., Any]] = None): | |
"""Initializes a module for export. | |
Args: | |
params: A dataclass for parameters to the module. | |
model: A tf_keras.Model instance to be exported. | |
input_signature: tf.TensorSpec, e.g. | |
tf.TensorSpec(shape=[None, 224, 224, 3], dtype=tf.uint8) | |
preprocessor: An optional callable to preprocess the inputs. | |
inference_step: An optional callable to forward-pass the model. | |
postprocessor: An optional callable to postprocess the model outputs. | |
""" | |
super().__init__( | |
params, | |
model=model, | |
preprocessor=preprocessor, | |
inference_step=inference_step, | |
postprocessor=postprocessor) | |
self.input_signature = input_signature | |
def serve(self, inputs): | |
x = self.preprocessor(inputs=inputs) if self.preprocessor else inputs | |
x = self.inference_step(x) | |
x = self.postprocessor(x) if self.postprocessor else x | |
return x | |
def get_inference_signatures(self, function_keys: Dict[Text, Text]): | |
"""Gets defined function signatures. | |
Args: | |
function_keys: A dictionary with keys as the function to create signature | |
for and values as the signature keys when returns. | |
Returns: | |
A dictionary with key as signature key and value as concrete functions | |
that can be used for tf.saved_model.save. | |
""" | |
signatures = {} | |
for _, def_name in function_keys.items(): | |
signatures[def_name] = self.serve.get_concrete_function( | |
self.input_signature) | |
return signatures | |