deanna-emery's picture
updates
93528c6
raw
history blame
3.96 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for SpineNet."""
# Import libraries
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.vision.modeling.backbones import spinenet_mobile
class SpineNetMobileTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(128, 0.6, 1, 0.0, 24),
(128, 0.65, 1, 0.2, 40),
(256, 1.0, 1, 0.2, 48),
)
def test_network_creation(self, input_size, filter_size_scale, block_repeats,
se_ratio, endpoints_num_filters):
"""Test creation of SpineNet models."""
min_level = 3
max_level = 7
tf_keras.backend.set_image_data_format('channels_last')
input_specs = tf_keras.layers.InputSpec(
shape=[None, input_size, input_size, 3])
model = spinenet_mobile.SpineNetMobile(
input_specs=input_specs,
min_level=min_level,
max_level=max_level,
endpoints_num_filters=endpoints_num_filters,
resample_alpha=se_ratio,
block_repeats=block_repeats,
filter_size_scale=filter_size_scale,
init_stochastic_depth_rate=0.2,
)
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
endpoints = model(inputs)
for l in range(min_level, max_level + 1):
self.assertIn(str(l), endpoints.keys())
self.assertAllEqual(
[1, input_size / 2**l, input_size / 2**l, endpoints_num_filters],
endpoints[str(l)].shape.as_list())
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
kwargs = dict(
min_level=3,
max_level=7,
endpoints_num_filters=256,
se_ratio=0.2,
expand_ratio=6,
block_repeats=1,
filter_size_scale=1.0,
init_stochastic_depth_rate=0.2,
use_sync_bn=False,
activation='relu',
norm_momentum=0.99,
norm_epsilon=0.001,
kernel_initializer='VarianceScaling',
kernel_regularizer=None,
bias_regularizer=None,
use_keras_upsampling_2d=False,
)
network = spinenet_mobile.SpineNetMobile(**kwargs)
expected_config = dict(kwargs)
self.assertEqual(network.get_config(), expected_config)
# Create another network object from the first object's config.
new_network = spinenet_mobile.SpineNetMobile.from_config(
network.get_config())
# Validate that the config can be forced to JSON.
_ = new_network.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
if __name__ == '__main__':
tf.test.main()