deanna-emery's picture
updates
93528c6
raw
history blame
3.8 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for resnet."""
# Import libraries
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.vision.modeling.backbones import resnet_3d
class ResNet3DTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(128, 50, 4, 'v0', False, 0.0),
(128, 50, 4, 'v1', False, 0.2),
(256, 50, 4, 'v1', True, 0.2),
)
def test_network_creation(self, input_size, model_id, endpoint_filter_scale,
stem_type, se_ratio, init_stochastic_depth_rate):
"""Test creation of ResNet3D family models."""
tf_keras.backend.set_image_data_format('channels_last')
temporal_strides = [1, 1, 1, 1]
temporal_kernel_sizes = [(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1),
(1, 3, 1)]
use_self_gating = [True, False, True, False]
network = resnet_3d.ResNet3D(
model_id=model_id,
temporal_strides=temporal_strides,
temporal_kernel_sizes=temporal_kernel_sizes,
use_self_gating=use_self_gating,
stem_type=stem_type,
se_ratio=se_ratio,
init_stochastic_depth_rate=init_stochastic_depth_rate)
inputs = tf_keras.Input(shape=(8, input_size, input_size, 3), batch_size=1)
endpoints = network(inputs)
self.assertAllEqual([
1, 2, input_size / 2**2, input_size / 2**2, 64 * endpoint_filter_scale
], endpoints['2'].shape.as_list())
self.assertAllEqual([
1, 2, input_size / 2**3, input_size / 2**3, 128 * endpoint_filter_scale
], endpoints['3'].shape.as_list())
self.assertAllEqual([
1, 2, input_size / 2**4, input_size / 2**4, 256 * endpoint_filter_scale
], endpoints['4'].shape.as_list())
self.assertAllEqual([
1, 2, input_size / 2**5, input_size / 2**5, 512 * endpoint_filter_scale
], endpoints['5'].shape.as_list())
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
kwargs = dict(
model_id=50,
temporal_strides=[1, 1, 1, 1],
temporal_kernel_sizes=[(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1),
(1, 3, 1)],
stem_type='v0',
stem_conv_temporal_kernel_size=5,
stem_conv_temporal_stride=2,
stem_pool_temporal_stride=2,
se_ratio=0.0,
use_self_gating=None,
init_stochastic_depth_rate=0.0,
use_sync_bn=False,
activation='relu',
norm_momentum=0.99,
norm_epsilon=0.001,
kernel_initializer='VarianceScaling',
kernel_regularizer=None,
bias_regularizer=None,
)
network = resnet_3d.ResNet3D(**kwargs)
expected_config = dict(kwargs)
self.assertEqual(network.get_config(), expected_config)
# Create another network object from the first object's config.
new_network = resnet_3d.ResNet3D.from_config(network.get_config())
# Validate that the config can be forced to JSON.
_ = new_network.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
if __name__ == '__main__':
tf.test.main()