Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for resnet.""" | |
# Import libraries | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.vision.modeling.backbones import resnet_3d | |
class ResNet3DTest(parameterized.TestCase, tf.test.TestCase): | |
def test_network_creation(self, input_size, model_id, endpoint_filter_scale, | |
stem_type, se_ratio, init_stochastic_depth_rate): | |
"""Test creation of ResNet3D family models.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
temporal_strides = [1, 1, 1, 1] | |
temporal_kernel_sizes = [(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1), | |
(1, 3, 1)] | |
use_self_gating = [True, False, True, False] | |
network = resnet_3d.ResNet3D( | |
model_id=model_id, | |
temporal_strides=temporal_strides, | |
temporal_kernel_sizes=temporal_kernel_sizes, | |
use_self_gating=use_self_gating, | |
stem_type=stem_type, | |
se_ratio=se_ratio, | |
init_stochastic_depth_rate=init_stochastic_depth_rate) | |
inputs = tf_keras.Input(shape=(8, input_size, input_size, 3), batch_size=1) | |
endpoints = network(inputs) | |
self.assertAllEqual([ | |
1, 2, input_size / 2**2, input_size / 2**2, 64 * endpoint_filter_scale | |
], endpoints['2'].shape.as_list()) | |
self.assertAllEqual([ | |
1, 2, input_size / 2**3, input_size / 2**3, 128 * endpoint_filter_scale | |
], endpoints['3'].shape.as_list()) | |
self.assertAllEqual([ | |
1, 2, input_size / 2**4, input_size / 2**4, 256 * endpoint_filter_scale | |
], endpoints['4'].shape.as_list()) | |
self.assertAllEqual([ | |
1, 2, input_size / 2**5, input_size / 2**5, 512 * endpoint_filter_scale | |
], endpoints['5'].shape.as_list()) | |
def test_serialize_deserialize(self): | |
# Create a network object that sets all of its config options. | |
kwargs = dict( | |
model_id=50, | |
temporal_strides=[1, 1, 1, 1], | |
temporal_kernel_sizes=[(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1), | |
(1, 3, 1)], | |
stem_type='v0', | |
stem_conv_temporal_kernel_size=5, | |
stem_conv_temporal_stride=2, | |
stem_pool_temporal_stride=2, | |
se_ratio=0.0, | |
use_self_gating=None, | |
init_stochastic_depth_rate=0.0, | |
use_sync_bn=False, | |
activation='relu', | |
norm_momentum=0.99, | |
norm_epsilon=0.001, | |
kernel_initializer='VarianceScaling', | |
kernel_regularizer=None, | |
bias_regularizer=None, | |
) | |
network = resnet_3d.ResNet3D(**kwargs) | |
expected_config = dict(kwargs) | |
self.assertEqual(network.get_config(), expected_config) | |
# Create another network object from the first object's config. | |
new_network = resnet_3d.ResNet3D.from_config(network.get_config()) | |
# Validate that the config can be forced to JSON. | |
_ = new_network.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(network.get_config(), new_network.get_config()) | |
if __name__ == '__main__': | |
tf.test.main() | |