deanna-emery's picture
updates
93528c6
raw
history blame
41 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of MobileNet Networks."""
import dataclasses
from typing import Optional, Dict, Any, Tuple
# Import libraries
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers
layers = tf_keras.layers
# pylint: disable=pointless-string-statement
@tf_keras.utils.register_keras_serializable(package='Vision')
class Conv2DBNBlock(tf_keras.layers.Layer):
"""A convolution block with batch normalization."""
def __init__(
self,
filters: int,
kernel_size: int = 3,
strides: int = 1,
use_bias: bool = False,
use_explicit_padding: bool = False,
activation: str = 'relu6',
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
use_normalization: bool = True,
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
**kwargs):
"""A convolution block with batch normalization.
Args:
filters: An `int` number of filters for the first two convolutions. Note
that the third and final convolution will use 4 times as many filters.
kernel_size: An `int` specifying the height and width of the 2D
convolution window.
strides: An `int` of block stride. If greater than 1, this block will
ultimately downsample the input.
use_bias: If True, use bias in the convolution layer.
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
inputs so that the output dimensions are the same as if 'SAME' padding
were used.
activation: A `str` name of the activation function.
kernel_initializer: A `str` for kernel initializer of convolutional
layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default to None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
Default to None.
use_normalization: If True, use batch normalization.
use_sync_bn: If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
**kwargs: Additional keyword arguments to be passed.
"""
super(Conv2DBNBlock, self).__init__(**kwargs)
self._filters = filters
self._kernel_size = kernel_size
self._strides = strides
self._activation = activation
self._use_bias = use_bias
self._use_explicit_padding = use_explicit_padding
self._kernel_initializer = kernel_initializer
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._use_normalization = use_normalization
self._use_sync_bn = use_sync_bn
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._norm = tf_keras.layers.BatchNormalization
if use_explicit_padding and kernel_size > 1:
self._padding = 'valid'
else:
self._padding = 'same'
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
def get_config(self):
config = {
'filters': self._filters,
'strides': self._strides,
'kernel_size': self._kernel_size,
'use_bias': self._use_bias,
'use_explicit_padding': self._use_explicit_padding,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'activation': self._activation,
'use_sync_bn': self._use_sync_bn,
'use_normalization': self._use_normalization,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon
}
base_config = super(Conv2DBNBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
if self._use_explicit_padding and self._kernel_size > 1:
padding_size = nn_layers.get_padding_for_kernel_size(self._kernel_size)
self._pad = tf_keras.layers.ZeroPadding2D(padding_size)
self._conv0 = tf_keras.layers.Conv2D(
filters=self._filters,
kernel_size=self._kernel_size,
strides=self._strides,
padding=self._padding,
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)
if self._use_normalization:
self._norm0 = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)
self._activation_layer = tf_utils.get_activation(
self._activation, use_keras_layer=True)
super(Conv2DBNBlock, self).build(input_shape)
def call(self, inputs, training=None):
if self._use_explicit_padding and self._kernel_size > 1:
inputs = self._pad(inputs)
x = self._conv0(inputs)
if self._use_normalization:
x = self._norm0(x)
return self._activation_layer(x)
"""
Architecture: https://arxiv.org/abs/1704.04861.
"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications" Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
"""
MNV1_BLOCK_SPECS = {
'spec_name': 'MobileNetV1',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides',
'filters', 'is_output'],
'block_specs': [
('convbn', 3, 2, 32, False),
('depsepconv', 3, 1, 64, False),
('depsepconv', 3, 2, 128, False),
('depsepconv', 3, 1, 128, True),
('depsepconv', 3, 2, 256, False),
('depsepconv', 3, 1, 256, True),
('depsepconv', 3, 2, 512, False),
('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512, False),
('depsepconv', 3, 1, 512, True),
('depsepconv', 3, 2, 1024, False),
('depsepconv', 3, 1, 1024, True),
]
}
"""
Architecture: https://arxiv.org/abs/1801.04381
"MobileNetV2: Inverted Residuals and Linear Bottlenecks"
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
"""
MNV2_BLOCK_SPECS = {
'spec_name': 'MobileNetV2',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'expand_ratio', 'is_output'],
'block_specs': [
('convbn', 3, 2, 32, None, False),
('invertedbottleneck', 3, 1, 16, 1., False),
('invertedbottleneck', 3, 2, 24, 6., False),
('invertedbottleneck', 3, 1, 24, 6., True),
('invertedbottleneck', 3, 2, 32, 6., False),
('invertedbottleneck', 3, 1, 32, 6., False),
('invertedbottleneck', 3, 1, 32, 6., True),
('invertedbottleneck', 3, 2, 64, 6., False),
('invertedbottleneck', 3, 1, 64, 6., False),
('invertedbottleneck', 3, 1, 64, 6., False),
('invertedbottleneck', 3, 1, 64, 6., False),
('invertedbottleneck', 3, 1, 96, 6., False),
('invertedbottleneck', 3, 1, 96, 6., False),
('invertedbottleneck', 3, 1, 96, 6., True),
('invertedbottleneck', 3, 2, 160, 6., False),
('invertedbottleneck', 3, 1, 160, 6., False),
('invertedbottleneck', 3, 1, 160, 6., False),
('invertedbottleneck', 3, 1, 320, 6., True),
('convbn', 1, 1, 1280, None, False),
]
}
"""
Architecture: https://arxiv.org/abs/1905.02244
"Searching for MobileNetV3"
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam
"""
MNV3Large_BLOCK_SPECS = {
'spec_name': 'MobileNetV3Large',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio',
'use_normalization', 'use_bias', 'is_output'],
'block_specs': [
('convbn', 3, 2, 16,
'hard_swish', None, None, True, False, False),
('invertedbottleneck', 3, 1, 16,
'relu', None, 1., None, False, False),
('invertedbottleneck', 3, 2, 24,
'relu', None, 4., None, False, False),
('invertedbottleneck', 3, 1, 24,
'relu', None, 3., None, False, True),
('invertedbottleneck', 5, 2, 40,
'relu', 0.25, 3., None, False, False),
('invertedbottleneck', 5, 1, 40,
'relu', 0.25, 3., None, False, False),
('invertedbottleneck', 5, 1, 40,
'relu', 0.25, 3., None, False, True),
('invertedbottleneck', 3, 2, 80,
'hard_swish', None, 6., None, False, False),
('invertedbottleneck', 3, 1, 80,
'hard_swish', None, 2.5, None, False, False),
('invertedbottleneck', 3, 1, 80,
'hard_swish', None, 2.3, None, False, False),
('invertedbottleneck', 3, 1, 80,
'hard_swish', None, 2.3, None, False, False),
('invertedbottleneck', 3, 1, 112,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 3, 1, 112,
'hard_swish', 0.25, 6., None, False, True),
('invertedbottleneck', 5, 2, 160,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 160,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 160,
'hard_swish', 0.25, 6., None, False, True),
('convbn', 1, 1, 960,
'hard_swish', None, None, True, False, False),
('gpooling', None, None, None,
None, None, None, None, None, False),
('convbn', 1, 1, 1280,
'hard_swish', None, None, False, True, False),
]
}
MNV3Small_BLOCK_SPECS = {
'spec_name': 'MobileNetV3Small',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio',
'use_normalization', 'use_bias', 'is_output'],
'block_specs': [
('convbn', 3, 2, 16,
'hard_swish', None, None, True, False, False),
('invertedbottleneck', 3, 2, 16,
'relu', 0.25, 1, None, False, True),
('invertedbottleneck', 3, 2, 24,
'relu', None, 72. / 16, None, False, False),
('invertedbottleneck', 3, 1, 24,
'relu', None, 88. / 24, None, False, True),
('invertedbottleneck', 5, 2, 40,
'hard_swish', 0.25, 4., None, False, False),
('invertedbottleneck', 5, 1, 40,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 40,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 48,
'hard_swish', 0.25, 3., None, False, False),
('invertedbottleneck', 5, 1, 48,
'hard_swish', 0.25, 3., None, False, True),
('invertedbottleneck', 5, 2, 96,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 96,
'hard_swish', 0.25, 6., None, False, False),
('invertedbottleneck', 5, 1, 96,
'hard_swish', 0.25, 6., None, False, True),
('convbn', 1, 1, 576,
'hard_swish', None, None, True, False, False),
('gpooling', None, None, None,
None, None, None, None, None, False),
('convbn', 1, 1, 1024,
'hard_swish', None, None, False, True, False),
]
}
"""
The EdgeTPU version is taken from
github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
"""
MNV3EdgeTPU_BLOCK_SPECS = {
'spec_name': 'MobileNetV3EdgeTPU',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio',
'use_residual', 'use_depthwise', 'is_output'],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, None, None, None, False),
('invertedbottleneck', 3, 1, 16, 'relu', None, 1., True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', None, 8., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, True),
('invertedbottleneck', 3, 2, 48, 'relu', None, 8., True, False, False),
('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, True),
('invertedbottleneck', 3, 2, 96, 'relu', None, 8., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 8., False, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, True),
('invertedbottleneck', 5, 2, 160, 'relu', None, 8., True, True, False),
('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
('invertedbottleneck', 3, 1, 192, 'relu', None, 8., True, True, True),
('convbn', 1, 1, 1280, 'relu', None, None, None, None, False),
]
}
"""
Architecture: https://arxiv.org/pdf/2008.08178.pdf
"Discovering Multi-Hardware Mobile Models via Architecture Search"
Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang,
Achille Brighton, Pieter-Jan Kindermans, Hanxiao Liu,
Berkin Akin, Suyog Gupta, and Andrew Howard
"""
MNMultiMAX_BLOCK_SPECS = {
'spec_name': 'MobileNetMultiMAX',
'block_spec_schema': [
'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, True),
('invertedbottleneck', 5, 2, 64, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, True),
('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 4., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, True),
('invertedbottleneck', 3, 2, 160, 'relu', 6., None, False, False),
('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 5., None, False, False),
('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, True),
('convbn', 1, 1, 960, 'relu', None, True, False, False),
('gpooling', None, None, None, None, None, None, None, False),
# Remove bias and add batch norm for the last layer to support QAT
# and achieve slightly better accuracy.
('convbn', 1, 1, 1280, 'relu', None, True, False, False),
]
}
MNMultiAVG_BLOCK_SPECS = {
'spec_name': 'MobileNetMultiAVG',
'block_spec_schema': [
'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', 2., None, False, True),
('invertedbottleneck', 5, 2, 64, 'relu', 5., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, True),
('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 6., None, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 4., None, False, True),
('invertedbottleneck', 3, 2, 192, 'relu', 6., None, False, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, True),
('convbn', 1, 1, 960, 'relu', None, True, False, False),
('gpooling', None, None, None, None, None, None, None, False),
# Remove bias and add batch norm for the last layer to support QAT
# and achieve slightly better accuracy.
('convbn', 1, 1, 1280, 'relu', None, True, False, False),
]
}
# Similar to MobileNetMultiAVG and used for segmentation task.
# Reduced the filters by a factor of 2 in the last block.
MNMultiAVG_SEG_BLOCK_SPECS = {
'spec_name':
'MobileNetMultiAVGSeg',
'block_spec_schema': [
'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 32, 'relu', 2., True, False, True),
('invertedbottleneck', 5, 2, 64, 'relu', 5., True, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., True, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 3., True, False, True),
('invertedbottleneck', 5, 2, 128, 'relu', 6., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 6., True, False, False),
('invertedbottleneck', 3, 1, 160, 'relu', 4., True, False, True),
('invertedbottleneck', 3, 2, 192, 'relu', 6., True, False, False),
('invertedbottleneck', 5, 1, 96, 'relu', 2., True, False, False),
('invertedbottleneck', 5, 1, 96, 'relu', 4., True, False, False),
('invertedbottleneck', 5, 1, 96, 'relu', 4., True, False, True),
('convbn', 1, 1, 448, 'relu', None, True, False, True),
('gpooling', None, None, None, None, None, None, None, False),
# Remove bias and add batch norm for the last layer to support QAT
# and achieve slightly better accuracy.
('convbn', 1, 1, 1280, 'relu', None, True, False, False),
]
}
# Similar to MobileNetMultiMax and used for segmentation task.
# Reduced the filters by a factor of 2 in the last block.
MNMultiMAX_SEG_BLOCK_SPECS = {
'spec_name':
'MobileNetMultiMAXSeg',
'block_spec_schema': [
'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
],
'block_specs': [
('convbn', 3, 2, 32, 'relu', None, True, False, False),
('invertedbottleneck', 3, 2, 32, 'relu', 3., True, False, True),
('invertedbottleneck', 5, 2, 64, 'relu', 6., True, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., True, False, False),
('invertedbottleneck', 3, 1, 64, 'relu', 2., True, False, True),
('invertedbottleneck', 5, 2, 128, 'relu', 6., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 4., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 6., True, False, False),
('invertedbottleneck', 3, 1, 128, 'relu', 3., True, False, True),
('invertedbottleneck', 3, 2, 160, 'relu', 6., True, False, False),
('invertedbottleneck', 5, 1, 96, 'relu', 2., True, False, False),
('invertedbottleneck', 3, 1, 96, 'relu', 4., True, False, False),
('invertedbottleneck', 5, 1, 96, 'relu', 320.0 / 96, True, False, True),
('convbn', 1, 1, 448, 'relu', None, True, False, True),
('gpooling', None, None, None, None, None, None, None, False),
# Remove bias and add batch norm for the last layer to support QAT
# and achieve slightly better accuracy.
('convbn', 1, 1, 1280, 'relu', None, True, False, False),
]
}
# A smaller MNV3Small, with reduced filters for the last few layers
MNV3SmallReducedFilters = {
'spec_name':
'MobilenetV3SmallReducedFilters',
'block_spec_schema': [
'block_fn', 'kernel_size', 'strides', 'filters', 'activation',
'se_ratio', 'expand_ratio', 'use_normalization', 'use_bias', 'is_output'
],
'block_specs': [
('convbn', 3, 2, 16, 'hard_swish', None, None, True, False, False),
('invertedbottleneck', 3, 2, 16, 'relu', 0.25, 1, None, False, True),
('invertedbottleneck', 3, 2, 24, 'relu', None, 72. / 16, None, False,
False),
('invertedbottleneck', 3, 1, 24, 'relu', None, 88. / 24, None, False,
True),
('invertedbottleneck', 5, 2, 40, 'hard_swish', 0.25, 4, None, False,
False),
('invertedbottleneck', 5, 1, 40, 'hard_swish', 0.25, 6, None, False,
False),
('invertedbottleneck', 5, 1, 40, 'hard_swish', 0.25, 6, None, False,
False),
('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 3, None, False,
False),
('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 3, None, False,
True),
# Layers below are different from MobileNetV3Small and have
# half as many filters
('invertedbottleneck', 5, 2, 48, 'hard_swish', 0.25, 3, None, False,
False),
('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 6, None, False,
False),
('invertedbottleneck', 5, 1, 48, 'hard_swish', 0.25, 6, None, False,
True),
('convbn', 1, 1, 288, 'hard_swish', None, None, True, False, False),
('gpooling', None, None, None, None, None, None, None, None, False),
('convbn', 1, 1, 1024, 'hard_swish', None, None, False, True, False),
]
}
SUPPORTED_SPECS_MAP = {
'MobileNetV1': MNV1_BLOCK_SPECS,
'MobileNetV2': MNV2_BLOCK_SPECS,
'MobileNetV3Large': MNV3Large_BLOCK_SPECS,
'MobileNetV3Small': MNV3Small_BLOCK_SPECS,
'MobileNetV3EdgeTPU': MNV3EdgeTPU_BLOCK_SPECS,
'MobileNetMultiMAX': MNMultiMAX_BLOCK_SPECS,
'MobileNetMultiAVG': MNMultiAVG_BLOCK_SPECS,
'MobileNetMultiAVGSeg': MNMultiAVG_SEG_BLOCK_SPECS,
'MobileNetMultiMAXSeg': MNMultiMAX_SEG_BLOCK_SPECS,
'MobileNetV3SmallReducedFilters': MNV3SmallReducedFilters,
}
@dataclasses.dataclass
class BlockSpec(hyperparams.Config):
"""A container class that specifies the block configuration for MobileNet."""
block_fn: str = 'convbn'
kernel_size: int = 3
strides: int = 1
filters: int = 32
use_bias: bool = False
use_normalization: bool = True
activation: str = 'relu6'
# Used for block type InvertedResConv.
expand_ratio: Optional[float] = 6.
# Used for block type InvertedResConv with SE.
se_ratio: Optional[float] = None
use_depthwise: bool = True
use_residual: bool = True
is_output: bool = True
def block_spec_decoder(
specs: Dict[Any, Any],
filter_size_scale: float,
# Set to 1 for mobilenetv1.
divisible_by: int = 8,
finegrain_classification_mode: bool = True):
"""Decodes specs for a block.
Args:
specs: A `dict` specification of block specs of a mobilenet version.
filter_size_scale: A `float` multiplier for the filter size for all
convolution ops. The value must be greater than zero. Typical usage will
be to set this value in (0, 1) to reduce the number of parameters or
computation cost of the model.
divisible_by: An `int` that ensures all inner dimensions are divisible by
this number.
finegrain_classification_mode: If True, the model will keep the last layer
large even for small multipliers, following
https://arxiv.org/abs/1801.04381.
Returns:
A list of `BlockSpec` that defines structure of the base network.
"""
spec_name = specs['spec_name']
block_spec_schema = specs['block_spec_schema']
block_specs = specs['block_specs']
if not block_specs:
raise ValueError(
'The block spec cannot be empty for {} !'.format(spec_name))
if len(block_specs[0]) != len(block_spec_schema):
raise ValueError('The block spec values {} do not match with '
'the schema {}'.format(block_specs[0], block_spec_schema))
decoded_specs = []
for s in block_specs:
kw_s = dict(zip(block_spec_schema, s))
decoded_specs.append(BlockSpec(**kw_s))
# This adjustment applies to V2 and V3
if (spec_name != 'MobileNetV1'
and finegrain_classification_mode
and filter_size_scale < 1.0):
decoded_specs[-1].filters /= filter_size_scale # pytype: disable=annotation-type-mismatch
for ds in decoded_specs:
if ds.filters:
ds.filters = nn_layers.round_filters(filters=ds.filters,
multiplier=filter_size_scale,
divisor=divisible_by,
min_depth=8)
return decoded_specs
@tf_keras.utils.register_keras_serializable(package='Vision')
class MobileNet(tf_keras.Model):
"""Creates a MobileNet family model."""
def __init__(
self,
model_id: str = 'MobileNetV2',
filter_size_scale: float = 1.0,
input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
shape=[None, None, None, 3]),
# The followings are for hyper-parameter tuning.
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
# The followings should be kept the same most of the times.
output_stride: Optional[int] = None,
min_depth: int = 8,
# divisible is not used in MobileNetV1.
divisible_by: int = 8,
stochastic_depth_drop_rate: float = 0.0,
regularize_depthwise: bool = False,
use_sync_bn: bool = False,
# finegrain is not used in MobileNetV1.
finegrain_classification_mode: bool = True,
output_intermediate_endpoints: bool = False,
**kwargs):
"""Initializes a MobileNet model.
Args:
model_id: A `str` of MobileNet version. The supported values are
`MobileNetV1`, `MobileNetV2`, `MobileNetV3Large`, `MobileNetV3Small`,
`MobileNetV3EdgeTPU`, `MobileNetMultiMAX` and `MobileNetMultiAVG`.
filter_size_scale: A `float` of multiplier for the filters (number of
channels) for all convolution ops. The value must be greater than zero.
Typical usage will be to set this value in (0, 1) to reduce the number
of parameters or computation cost of the model.
input_specs: A `tf_keras.layers.InputSpec` of specs of the input tensor.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_initializer: A `str` for kernel initializer of convolutional
layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default to None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
Default to None.
output_stride: An `int` that specifies the requested ratio of input to
output spatial resolution. If not None, then we invoke atrous
convolution if necessary to prevent the network from reducing the
spatial resolution of activation maps. Allowed values are 8 (accurate
fully convolutional mode), 16 (fast fully convolutional mode), 32
(classification mode).
min_depth: An `int` of minimum depth (number of channels) for all
convolution ops. Enforced when filter_size_scale < 1, and not an active
constraint when filter_size_scale >= 1.
divisible_by: An `int` that ensures all inner dimensions are divisible by
this number.
stochastic_depth_drop_rate: A `float` of drop rate for drop connect layer.
regularize_depthwise: If Ture, apply regularization on depthwise.
use_sync_bn: If True, use synchronized batch normalization.
finegrain_classification_mode: If True, the model will keep the last layer
large even for small multipliers, following
https://arxiv.org/abs/1801.04381.
output_intermediate_endpoints: A `bool` of whether or not output the
intermediate endpoints.
**kwargs: Additional keyword arguments to be passed.
"""
if model_id not in SUPPORTED_SPECS_MAP:
raise ValueError('The MobileNet version {} '
'is not supported'.format(model_id))
if filter_size_scale <= 0:
raise ValueError('filter_size_scale is not greater than zero.')
if output_stride is not None:
if model_id == 'MobileNetV1':
if output_stride not in [8, 16, 32]:
raise ValueError('Only allowed output_stride values are 8, 16, 32.')
else:
if output_stride == 0 or (output_stride > 1 and output_stride % 2):
raise ValueError('Output stride must be None, 1 or a multiple of 2.')
self._model_id = model_id
self._input_specs = input_specs
self._filter_size_scale = filter_size_scale
self._min_depth = min_depth
self._output_stride = output_stride
self._divisible_by = divisible_by
self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
self._regularize_depthwise = regularize_depthwise
self._kernel_initializer = kernel_initializer
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._use_sync_bn = use_sync_bn
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._finegrain_classification_mode = finegrain_classification_mode
self._output_intermediate_endpoints = output_intermediate_endpoints
inputs = tf_keras.Input(shape=input_specs.shape[1:])
block_specs = SUPPORTED_SPECS_MAP.get(model_id)
self._decoded_specs = block_spec_decoder(
specs=block_specs,
filter_size_scale=self._filter_size_scale,
divisible_by=self._get_divisible_by(),
finegrain_classification_mode=self._finegrain_classification_mode)
x, endpoints, next_endpoint_level = self._mobilenet_base(inputs=inputs)
self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
# Don't include the final layer in `self._output_specs` to support decoders.
endpoints[str(next_endpoint_level)] = x
super(MobileNet, self).__init__(
inputs=inputs, outputs=endpoints, **kwargs)
def _get_divisible_by(self):
if self._model_id == 'MobileNetV1':
return 1
else:
return self._divisible_by
def _mobilenet_base(self,
inputs: tf.Tensor
) -> Tuple[tf.Tensor, Dict[str, tf.Tensor], int]:
"""Builds the base MobileNet architecture.
Args:
inputs: A `tf.Tensor` of shape `[batch_size, height, width, channels]`.
Returns:
A tuple of output Tensor and dictionary that collects endpoints.
"""
input_shape = inputs.get_shape().as_list()
if len(input_shape) != 4:
raise ValueError('Expected rank 4 input, was: %d' % len(input_shape))
# The current_stride variable keeps track of the output stride of the
# activations, i.e., the running product of convolution strides up to the
# current network layer. This allows us to invoke atrous convolution
# whenever applying the next convolution would result in the activations
# having output stride larger than the target output_stride.
current_stride = 1
# The atrous convolution rate parameter.
rate = 1
net = inputs
endpoints = {}
endpoint_level = 2
for i, block_def in enumerate(self._decoded_specs):
block_name = 'block_group_{}_{}'.format(block_def.block_fn, i)
# A small catch for gpooling block with None strides
if not block_def.strides:
block_def.strides = 1
if (self._output_stride is not None and
current_stride == self._output_stride):
# If we have reached the target output_stride, then we need to employ
# atrous convolution with stride=1 and multiply the atrous rate by the
# current unit's stride for use in subsequent layers.
layer_stride = 1
layer_rate = rate
rate *= block_def.strides
else:
layer_stride = block_def.strides
layer_rate = 1
current_stride *= block_def.strides
intermediate_endpoints = {}
if block_def.block_fn == 'convbn':
net = Conv2DBNBlock(
filters=block_def.filters,
kernel_size=block_def.kernel_size,
strides=block_def.strides,
activation=block_def.activation,
use_bias=block_def.use_bias,
use_normalization=block_def.use_normalization,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon
)(net)
elif block_def.block_fn == 'depsepconv':
net = nn_blocks.DepthwiseSeparableConvBlock(
filters=block_def.filters,
kernel_size=block_def.kernel_size,
strides=layer_stride,
activation=block_def.activation,
dilation_rate=layer_rate,
regularize_depthwise=self._regularize_depthwise,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon,
)(net)
elif block_def.block_fn == 'invertedbottleneck':
use_rate = rate
if layer_rate > 1 and block_def.kernel_size != 1:
# We will apply atrous rate in the following cases:
# 1) When kernel_size is not in params, the operation then uses
# default kernel size 3x3.
# 2) When kernel_size is in params, and if the kernel_size is not
# equal to (1, 1) (there is no need to apply atrous convolution to
# any 1x1 convolution).
use_rate = layer_rate
in_filters = net.shape.as_list()[-1]
block = nn_blocks.InvertedBottleneckBlock(
in_filters=in_filters,
out_filters=block_def.filters,
kernel_size=block_def.kernel_size,
strides=layer_stride,
expand_ratio=block_def.expand_ratio,
se_ratio=block_def.se_ratio,
expand_se_in_filters=True,
se_gating_activation='hard_sigmoid',
activation=block_def.activation,
use_depthwise=block_def.use_depthwise,
use_residual=block_def.use_residual,
dilation_rate=use_rate,
regularize_depthwise=self._regularize_depthwise,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon,
stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
divisible_by=self._get_divisible_by(),
output_intermediate_endpoints=self._output_intermediate_endpoints,
)
if self._output_intermediate_endpoints:
net, intermediate_endpoints = block(net)
else:
net = block(net)
elif block_def.block_fn == 'gpooling':
net = layers.GlobalAveragePooling2D(keepdims=True)(net)
else:
raise ValueError('Unknown block type {} for layer {}'.format(
block_def.block_fn, i))
net = tf_keras.layers.Activation('linear', name=block_name)(net)
if block_def.is_output:
endpoints[str(endpoint_level)] = net
for key, tensor in intermediate_endpoints.items():
endpoints[str(endpoint_level) + '/' + key] = tensor
if current_stride != self._output_stride:
endpoint_level += 1
if str(endpoint_level) in endpoints:
endpoint_level += 1
return net, endpoints, endpoint_level
def get_config(self):
config_dict = {
'model_id': self._model_id,
'filter_size_scale': self._filter_size_scale,
'min_depth': self._min_depth,
'output_stride': self._output_stride,
'divisible_by': self._divisible_by,
'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
'regularize_depthwise': self._regularize_depthwise,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'use_sync_bn': self._use_sync_bn,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon,
'finegrain_classification_mode': self._finegrain_classification_mode,
}
return config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def output_specs(self):
"""A dict of {level: TensorShape} pairs for the model output."""
return self._output_specs
@factory.register_backbone_builder('mobilenet')
def build_mobilenet(
input_specs: tf_keras.layers.InputSpec,
backbone_config: hyperparams.Config,
norm_activation_config: hyperparams.Config,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None
) -> tf_keras.Model:
"""Builds MobileNet backbone from a config."""
backbone_type = backbone_config.type
backbone_cfg = backbone_config.get()
assert backbone_type == 'mobilenet', (f'Inconsistent backbone type '
f'{backbone_type}')
return MobileNet(
model_id=backbone_cfg.model_id,
filter_size_scale=backbone_cfg.filter_size_scale,
input_specs=input_specs,
stochastic_depth_drop_rate=backbone_cfg.stochastic_depth_drop_rate,
output_stride=backbone_cfg.output_stride,
output_intermediate_endpoints=backbone_cfg.output_intermediate_endpoints,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer)