Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import torch | |
from models.backbone import Backbone, Joiner | |
from models.detr import DETR, PostProcess | |
from models.position_encoding import PositionEmbeddingSine | |
from models.segmentation import DETRsegm, PostProcessPanoptic | |
from models.transformer import Transformer | |
dependencies = ["torch", "torchvision"] | |
def _make_detr(backbone_name: str, dilation=False, num_classes=91, mask=False): | |
hidden_dim = 256 | |
backbone = Backbone(backbone_name, train_backbone=True, return_interm_layers=mask, dilation=dilation) | |
pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True) | |
backbone_with_pos_enc = Joiner(backbone, pos_enc) | |
backbone_with_pos_enc.num_channels = backbone.num_channels | |
transformer = Transformer(d_model=hidden_dim, return_intermediate_dec=True) | |
detr = DETR(backbone_with_pos_enc, transformer, num_classes=num_classes, num_queries=100) | |
if mask: | |
return DETRsegm(detr) | |
return detr | |
def detr_resnet50(pretrained=False, num_classes=91, return_postprocessor=False): | |
""" | |
DETR R50 with 6 encoder and 6 decoder layers. | |
Achieves 42/62.4 AP/AP50 on COCO val5k. | |
""" | |
model = _make_detr("resnet50", dilation=False, num_classes=num_classes) | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth", map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
if return_postprocessor: | |
return model, PostProcess() | |
return model | |
def detr_resnet50_dc5(pretrained=False, num_classes=91, return_postprocessor=False): | |
""" | |
DETR-DC5 R50 with 6 encoder and 6 decoder layers. | |
The last block of ResNet-50 has dilation to increase | |
output resolution. | |
Achieves 43.3/63.1 AP/AP50 on COCO val5k. | |
""" | |
model = _make_detr("resnet50", dilation=True, num_classes=num_classes) | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-f0fb7ef5.pth", map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
if return_postprocessor: | |
return model, PostProcess() | |
return model | |
def detr_resnet101(pretrained=False, num_classes=91, return_postprocessor=False): | |
""" | |
DETR-DC5 R101 with 6 encoder and 6 decoder layers. | |
Achieves 43.5/63.8 AP/AP50 on COCO val5k. | |
""" | |
model = _make_detr("resnet101", dilation=False, num_classes=num_classes) | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/detr/detr-r101-2c7b67e5.pth", map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
if return_postprocessor: | |
return model, PostProcess() | |
return model | |
def detr_resnet101_dc5(pretrained=False, num_classes=91, return_postprocessor=False): | |
""" | |
DETR-DC5 R101 with 6 encoder and 6 decoder layers. | |
The last block of ResNet-101 has dilation to increase | |
output resolution. | |
Achieves 44.9/64.7 AP/AP50 on COCO val5k. | |
""" | |
model = _make_detr("resnet101", dilation=True, num_classes=num_classes) | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/detr/detr-r101-dc5-a2e86def.pth", map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
if return_postprocessor: | |
return model, PostProcess() | |
return model | |
def detr_resnet50_panoptic( | |
pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False | |
): | |
""" | |
DETR R50 with 6 encoder and 6 decoder layers. | |
Achieves 43.4 PQ on COCO val5k. | |
threshold is the minimum confidence required for keeping segments in the prediction | |
""" | |
model = _make_detr("resnet50", dilation=False, num_classes=num_classes, mask=True) | |
is_thing_map = {i: i <= 90 for i in range(250)} | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/detr/detr-r50-panoptic-00ce5173.pth", | |
map_location="cpu", | |
check_hash=True, | |
) | |
model.load_state_dict(checkpoint["model"]) | |
if return_postprocessor: | |
return model, PostProcessPanoptic(is_thing_map, threshold=threshold) | |
return model | |
def detr_resnet50_dc5_panoptic( | |
pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False | |
): | |
""" | |
DETR-DC5 R50 with 6 encoder and 6 decoder layers. | |
The last block of ResNet-50 has dilation to increase | |
output resolution. | |
Achieves 44.6 on COCO val5k. | |
threshold is the minimum confidence required for keeping segments in the prediction | |
""" | |
model = _make_detr("resnet50", dilation=True, num_classes=num_classes, mask=True) | |
is_thing_map = {i: i <= 90 for i in range(250)} | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-panoptic-da08f1b1.pth", | |
map_location="cpu", | |
check_hash=True, | |
) | |
model.load_state_dict(checkpoint["model"]) | |
if return_postprocessor: | |
return model, PostProcessPanoptic(is_thing_map, threshold=threshold) | |
return model | |
def detr_resnet101_panoptic( | |
pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False | |
): | |
""" | |
DETR-DC5 R101 with 6 encoder and 6 decoder layers. | |
Achieves 45.1 PQ on COCO val5k. | |
threshold is the minimum confidence required for keeping segments in the prediction | |
""" | |
model = _make_detr("resnet101", dilation=False, num_classes=num_classes, mask=True) | |
is_thing_map = {i: i <= 90 for i in range(250)} | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/detr/detr-r101-panoptic-40021d53.pth", | |
map_location="cpu", | |
check_hash=True, | |
) | |
model.load_state_dict(checkpoint["model"]) | |
if return_postprocessor: | |
return model, PostProcessPanoptic(is_thing_map, threshold=threshold) | |
return model | |