Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
class Linear(nn.Module): | |
def __init__(self, in_features: int, out_features: int): | |
super(Linear, self).__init__() | |
self.in_features = in_features | |
self.out_features = out_features | |
self.weight = nn.Parameter( | |
( | |
torch.randn((self.in_features, self.out_features), device=device) * 0.1 | |
).requires_grad_() | |
) | |
self.bias = nn.Parameter( | |
(torch.randn(self.out_features, device=device) * 0.1).requires_grad_() | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x @ self.weight + self.bias | |
class ReLU(nn.Module): | |
def forward(x: torch.Tensor) -> torch.Tensor: | |
return torch.max(x, torch.tensor(0)) | |
class Sequential(nn.Module): | |
def __init__(self, *layers): | |
super(Sequential, self).__init__() | |
self.layers = nn.ModuleList(layers) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
for layer in self.layers: | |
x = layer(x) | |
return x | |
class Flatten(nn.Module): | |
def forward(x: torch.Tensor) -> torch.Tensor: | |
return x.view(x.size(0), -1) | |
class DigitClassifier(nn.Module): | |
def __init__(self): | |
super(DigitClassifier, self).__init__() | |
self.main = Sequential( | |
Flatten(), | |
Linear(in_features=784, out_features=256), | |
ReLU(), | |
Linear(in_features=256, out_features=64), | |
ReLU(), | |
Linear(in_features=64, out_features=10), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.main(x) | |