Spaces:
Sleeping
Sleeping
replace
Browse files
app.py
CHANGED
@@ -1,147 +1,60 @@
|
|
1 |
-
import io
|
2 |
-
import random
|
3 |
-
from typing import List, Tuple
|
4 |
|
5 |
-
import
|
|
|
|
|
|
|
6 |
import panel as pn
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
pn.extension(design="bootstrap", sizing_mode="stretch_width")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
api_url = f"https://api.the{pet}api.com/v1/images/search"
|
24 |
-
async with aiohttp.ClientSession() as session:
|
25 |
-
async with session.get(api_url) as resp:
|
26 |
-
return (await resp.json())[0]["url"]
|
27 |
-
|
28 |
-
|
29 |
-
@pn.cache
|
30 |
-
def load_processor_model(
|
31 |
-
processor_name: str, model_name: str
|
32 |
-
) -> Tuple[CLIPProcessor, CLIPModel]:
|
33 |
-
processor = CLIPProcessor.from_pretrained(processor_name)
|
34 |
-
model = CLIPModel.from_pretrained(model_name)
|
35 |
-
return processor, model
|
36 |
-
|
37 |
-
|
38 |
-
async def open_image_url(image_url: str) -> Image:
|
39 |
-
async with aiohttp.ClientSession() as session:
|
40 |
-
async with session.get(image_url) as resp:
|
41 |
-
return Image.open(io.BytesIO(await resp.read()))
|
42 |
-
|
43 |
-
|
44 |
-
def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
|
45 |
-
processor, model = load_processor_model(
|
46 |
-
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
|
47 |
-
)
|
48 |
-
inputs = processor(
|
49 |
-
text=class_items,
|
50 |
-
images=[image],
|
51 |
-
return_tensors="pt", # pytorch tensors
|
52 |
-
)
|
53 |
-
outputs = model(**inputs)
|
54 |
-
logits_per_image = outputs.logits_per_image
|
55 |
-
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
|
56 |
-
return class_likelihoods[0]
|
57 |
-
|
58 |
-
|
59 |
-
async def process_inputs(class_names: List[str], image_url: str):
|
60 |
-
"""
|
61 |
-
High level function that takes in the user inputs and returns the
|
62 |
-
classification results as panel objects.
|
63 |
-
"""
|
64 |
-
try:
|
65 |
-
main.disabled = True
|
66 |
-
if not image_url:
|
67 |
-
yield "##### β οΈ Provide an image URL"
|
68 |
-
return
|
69 |
-
|
70 |
-
yield "##### β Fetching image and running model..."
|
71 |
-
try:
|
72 |
-
pil_img = await open_image_url(image_url)
|
73 |
-
img = pn.pane.Image(pil_img, height=400, align="center")
|
74 |
-
except Exception as e:
|
75 |
-
yield f"##### π Something went wrong, please try a different URL!"
|
76 |
-
return
|
77 |
-
|
78 |
-
class_items = class_names.split(",")
|
79 |
-
class_likelihoods = get_similarity_scores(class_items, pil_img)
|
80 |
-
|
81 |
-
# build the results column
|
82 |
-
results = pn.Column("##### π Here are the results!", img)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
input_widgets = pn.Column(
|
115 |
-
"##### π Click randomize or paste a URL to start classifying!",
|
116 |
-
pn.Row(image_url, randomize_url),
|
117 |
-
class_names,
|
118 |
-
)
|
119 |
-
|
120 |
-
# add interactivity
|
121 |
-
interactive_result = pn.panel(
|
122 |
-
pn.bind(process_inputs, image_url=image_url, class_names=class_names),
|
123 |
-
height=600,
|
124 |
-
)
|
125 |
-
|
126 |
-
# add footer
|
127 |
-
footer_row = pn.Row(pn.Spacer(), align="center")
|
128 |
-
for icon, url in ICON_URLS.items():
|
129 |
-
href_button = pn.widgets.Button(icon=icon, width=35, height=35)
|
130 |
-
href_button.js_on_click(code=f"window.open('{url}')")
|
131 |
-
footer_row.append(href_button)
|
132 |
-
footer_row.append(pn.Spacer())
|
133 |
-
|
134 |
-
# create dashboard
|
135 |
-
main = pn.WidgetBox(
|
136 |
-
input_widgets,
|
137 |
-
interactive_result,
|
138 |
-
footer_row,
|
139 |
-
)
|
140 |
-
|
141 |
-
title = "Panel Demo - Image Classification"
|
142 |
-
pn.template.BootstrapTemplate(
|
143 |
-
title=title,
|
144 |
-
main=main,
|
145 |
-
main_max_width="min(50%, 698px)",
|
146 |
-
header_background="#F08080",
|
147 |
-
).servable(title=title)
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
from vega_datasets import data
|
3 |
+
from scipy import stats
|
4 |
+
from bokeh.plotting import figure
|
5 |
+
from bokeh.models import ColumnDataSource
|
6 |
import panel as pn
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
#import io
|
10 |
+
#import random
|
11 |
+
#from typing import List, Tuple
|
12 |
+
|
13 |
+
#import aiohttp
|
14 |
+
#import panel as pn
|
15 |
+
#from PIL import Image
|
16 |
+
#from transformers import CLIPModel, CLIPProcessor
|
17 |
|
18 |
pn.extension(design="bootstrap", sizing_mode="stretch_width")
|
19 |
|
20 |
+
|
21 |
+
source = data.seattle_weather()
|
22 |
+
|
23 |
+
pn.extension()
|
24 |
+
|
25 |
+
temp = sorted(source['temp_max'].values)
|
26 |
+
|
27 |
+
max_bins = int(np.ceil(max(temp))+ 1 - np.floor(min(temp)))
|
28 |
+
|
29 |
+
def create_plot(bandwidth=1.0, bins=max_bins):
|
30 |
+
plot = figure(width=300, height=300, toolbar_location=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Histogram
|
33 |
+
#bins = np.arange(np.floor(min(temp)), np.ceil(max(temp))+1, 1)
|
34 |
+
hist, edges = np.histogram(temp, bins=bins)
|
35 |
+
|
36 |
+
hist = hist / hist.sum()
|
37 |
+
|
38 |
+
quad = plot.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
|
39 |
+
fill_color="grey", line_color="white", alpha=0.5)
|
40 |
+
|
41 |
+
# density
|
42 |
+
kernel = stats.gaussian_kde(temp, bw_method=bandwidth)
|
43 |
+
x = np.linspace(min(temp), max(temp), 100)
|
44 |
+
y = kernel(x)
|
45 |
+
col_source = ColumnDataSource(data=dict(x=x, y=y))
|
46 |
+
line = plot.line('x', 'y', source=col_source, alpha=1.0)
|
47 |
+
return plot
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
bw_widget = pn.widgets.FloatSlider(name="Bandwidth", value=1.0, start=0.03, end=2.0, step=0.02)
|
52 |
+
bins_widget = pn.widgets.IntSlider(name="Number of Bins", value=max_bins, start=1, end=max_bins)
|
53 |
+
|
54 |
+
bound_plot = pn.bind(create_plot, bandwidth=bw_widget, bins=bins_widget)
|
55 |
+
|
56 |
+
first_app = pn.Column(bw_widget, bins_widget, bound_plot)
|
57 |
+
|
58 |
+
first_app.servable()
|
59 |
+
|
60 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|