dcard commited on
Commit
542501c
β€’
1 Parent(s): cb8d974
Files changed (1) hide show
  1. app.py +54 -141
app.py CHANGED
@@ -1,147 +1,60 @@
1
- import io
2
- import random
3
- from typing import List, Tuple
4
 
5
- import aiohttp
 
 
 
6
  import panel as pn
7
- from PIL import Image
8
- from transformers import CLIPModel, CLIPProcessor
 
 
 
 
 
 
 
 
9
 
10
  pn.extension(design="bootstrap", sizing_mode="stretch_width")
11
 
12
- ICON_URLS = {
13
- "brand-github": "https://github.com/holoviz/panel",
14
- "brand-twitter": "https://twitter.com/Panel_Org",
15
- "brand-linkedin": "https://www.linkedin.com/company/panel-org",
16
- "message-circle": "https://discourse.holoviz.org/",
17
- "brand-discord": "https://discord.gg/AXRHnJU6sP",
18
- }
19
-
20
-
21
- async def random_url(_):
22
- pet = random.choice(["cat", "dog"])
23
- api_url = f"https://api.the{pet}api.com/v1/images/search"
24
- async with aiohttp.ClientSession() as session:
25
- async with session.get(api_url) as resp:
26
- return (await resp.json())[0]["url"]
27
-
28
-
29
- @pn.cache
30
- def load_processor_model(
31
- processor_name: str, model_name: str
32
- ) -> Tuple[CLIPProcessor, CLIPModel]:
33
- processor = CLIPProcessor.from_pretrained(processor_name)
34
- model = CLIPModel.from_pretrained(model_name)
35
- return processor, model
36
-
37
-
38
- async def open_image_url(image_url: str) -> Image:
39
- async with aiohttp.ClientSession() as session:
40
- async with session.get(image_url) as resp:
41
- return Image.open(io.BytesIO(await resp.read()))
42
-
43
-
44
- def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
45
- processor, model = load_processor_model(
46
- "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
47
- )
48
- inputs = processor(
49
- text=class_items,
50
- images=[image],
51
- return_tensors="pt", # pytorch tensors
52
- )
53
- outputs = model(**inputs)
54
- logits_per_image = outputs.logits_per_image
55
- class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
56
- return class_likelihoods[0]
57
-
58
-
59
- async def process_inputs(class_names: List[str], image_url: str):
60
- """
61
- High level function that takes in the user inputs and returns the
62
- classification results as panel objects.
63
- """
64
- try:
65
- main.disabled = True
66
- if not image_url:
67
- yield "##### ⚠️ Provide an image URL"
68
- return
69
-
70
- yield "##### βš™ Fetching image and running model..."
71
- try:
72
- pil_img = await open_image_url(image_url)
73
- img = pn.pane.Image(pil_img, height=400, align="center")
74
- except Exception as e:
75
- yield f"##### πŸ˜” Something went wrong, please try a different URL!"
76
- return
77
-
78
- class_items = class_names.split(",")
79
- class_likelihoods = get_similarity_scores(class_items, pil_img)
80
-
81
- # build the results column
82
- results = pn.Column("##### πŸŽ‰ Here are the results!", img)
83
 
84
- for class_item, class_likelihood in zip(class_items, class_likelihoods):
85
- row_label = pn.widgets.StaticText(
86
- name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
87
- )
88
- row_bar = pn.indicators.Progress(
89
- value=int(class_likelihood * 100),
90
- sizing_mode="stretch_width",
91
- bar_color="secondary",
92
- margin=(0, 10),
93
- design=pn.theme.Material,
94
- )
95
- results.append(pn.Column(row_label, row_bar))
96
- yield results
97
- finally:
98
- main.disabled = False
99
-
100
-
101
- # create widgets
102
- randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
103
-
104
- image_url = pn.widgets.TextInput(
105
- name="Image URL to classify",
106
- value=pn.bind(random_url, randomize_url),
107
- )
108
- class_names = pn.widgets.TextInput(
109
- name="Comma separated class names",
110
- placeholder="Enter possible class names, e.g. cat, dog",
111
- value="cat, dog, parrot",
112
- )
113
-
114
- input_widgets = pn.Column(
115
- "##### 😊 Click randomize or paste a URL to start classifying!",
116
- pn.Row(image_url, randomize_url),
117
- class_names,
118
- )
119
-
120
- # add interactivity
121
- interactive_result = pn.panel(
122
- pn.bind(process_inputs, image_url=image_url, class_names=class_names),
123
- height=600,
124
- )
125
-
126
- # add footer
127
- footer_row = pn.Row(pn.Spacer(), align="center")
128
- for icon, url in ICON_URLS.items():
129
- href_button = pn.widgets.Button(icon=icon, width=35, height=35)
130
- href_button.js_on_click(code=f"window.open('{url}')")
131
- footer_row.append(href_button)
132
- footer_row.append(pn.Spacer())
133
-
134
- # create dashboard
135
- main = pn.WidgetBox(
136
- input_widgets,
137
- interactive_result,
138
- footer_row,
139
- )
140
-
141
- title = "Panel Demo - Image Classification"
142
- pn.template.BootstrapTemplate(
143
- title=title,
144
- main=main,
145
- main_max_width="min(50%, 698px)",
146
- header_background="#F08080",
147
- ).servable(title=title)
 
 
 
 
1
 
2
+ from vega_datasets import data
3
+ from scipy import stats
4
+ from bokeh.plotting import figure
5
+ from bokeh.models import ColumnDataSource
6
  import panel as pn
7
+ import numpy as np
8
+
9
+ #import io
10
+ #import random
11
+ #from typing import List, Tuple
12
+
13
+ #import aiohttp
14
+ #import panel as pn
15
+ #from PIL import Image
16
+ #from transformers import CLIPModel, CLIPProcessor
17
 
18
  pn.extension(design="bootstrap", sizing_mode="stretch_width")
19
 
20
+
21
+ source = data.seattle_weather()
22
+
23
+ pn.extension()
24
+
25
+ temp = sorted(source['temp_max'].values)
26
+
27
+ max_bins = int(np.ceil(max(temp))+ 1 - np.floor(min(temp)))
28
+
29
+ def create_plot(bandwidth=1.0, bins=max_bins):
30
+ plot = figure(width=300, height=300, toolbar_location=None)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ # Histogram
33
+ #bins = np.arange(np.floor(min(temp)), np.ceil(max(temp))+1, 1)
34
+ hist, edges = np.histogram(temp, bins=bins)
35
+
36
+ hist = hist / hist.sum()
37
+
38
+ quad = plot.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
39
+ fill_color="grey", line_color="white", alpha=0.5)
40
+
41
+ # density
42
+ kernel = stats.gaussian_kde(temp, bw_method=bandwidth)
43
+ x = np.linspace(min(temp), max(temp), 100)
44
+ y = kernel(x)
45
+ col_source = ColumnDataSource(data=dict(x=x, y=y))
46
+ line = plot.line('x', 'y', source=col_source, alpha=1.0)
47
+ return plot
48
+
49
+
50
+
51
+ bw_widget = pn.widgets.FloatSlider(name="Bandwidth", value=1.0, start=0.03, end=2.0, step=0.02)
52
+ bins_widget = pn.widgets.IntSlider(name="Number of Bins", value=max_bins, start=1, end=max_bins)
53
+
54
+ bound_plot = pn.bind(create_plot, bandwidth=bw_widget, bins=bins_widget)
55
+
56
+ first_app = pn.Column(bw_widget, bins_widget, bound_plot)
57
+
58
+ first_app.servable()
59
+
60
+