SandSnapModelDemo / app_files /src /sedinet_utils.py
dbuscombe's picture
v1
d86998c
# Written by Dr Daniel Buscombe, Marda Science LLC
# for the SandSnap Program
#
# MIT License
#
# Copyright (c) 2020-2021, Marda Science LLC
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
##> Release v1.4 (Aug 2021)
from imports import *
from matplotlib import MatplotlibDeprecationWarning
import warnings
warnings.filterwarnings(action="ignore",category=MatplotlibDeprecationWarning)
###===================================================
## FUNCTIONS FOR LEARNING RATE SCHEDULER
def exponential_decay(lr0, s):
def exponential_decay_fn(epoch):
return lr0 * 0.1 **(epoch / s)
return exponential_decay_fn
###===================================================
## IMAGE AUGMENTATION FUNCTIONS (for DO_AUG=True)
# def h_flip(image):
# return np.fliplr(image)
def v_flip(image):
return np.flipud(image)
def warp_shift(image):
shift= random.randint(25,200)
transform = AffineTransform(translation=(0,shift))
warp_image = warp(image, transform, mode="wrap")
return warp_image
def apply_aug(im):
return [im,v_flip(warp_shift(im))] #, clockwise_rotation(im), h_flip(im)]
##========================================================
def rescale(dat,
mn,
mx):
'''
rescales an input dat between mn and mx
'''
m = min(dat.flatten())
M = max(dat.flatten())
return (mx-mn)*(dat-m)/(M-m)+mn
def do_standardize(img):
#standardization using adjusted standard deviation
N = np.shape(img)[0] * np.shape(img)[1]
s = np.maximum(np.std(img), 1.0/np.sqrt(N))
m = np.mean(img)
img = (img - m) / s
img = rescale(img, 0, 1)
del m, s, N
return img
###===================================================
### IMAGE BATCH GENERATOR FUNCTIONS
def get_data_generator_Nvars_siso_simo(df, indices, for_training, vars,
batch_size, greyscale, do_aug,#CS,
standardize, tilesize):
"""
This function generates data for a batch of images and N associated metrics
"""
##print(do_aug)
if len(vars)==1:
images, p1s = [], []
elif len(vars)==2:
images, p1s, p2s = [], [], []
elif len(vars)==3:
images, p1s, p2s, p3s = [], [], [], []
elif len(vars)==4:
images, p1s, p2s, p3s, p4s = [], [], [], [], []
elif len(vars)==5:
images, p1s, p2s, p3s, p4s, p5s = [], [], [], [], [], []
elif len(vars)==6:
images, p1s, p2s, p3s, p4s, p5s, p6s =\
[], [], [], [], [], [], []
elif len(vars)==7:
images, p1s, p2s, p3s, p4s, p5s, p6s, p7s =\
[], [], [], [], [], [], [], []
elif len(vars)==8:
images, p1s, p2s, p3s, p4s, p5s, p6s, p7s, p8s =\
[], [], [], [], [], [], [], [], []
elif len(vars)==9:
images, p1s, p2s, p3s, p4s, p5s, p6s, p7s, p8s, p9s =\
[], [], [], [], [], [], [], [], [], []
while True:
for i in indices:
r = df.iloc[i]
if len(vars)==1:
file, p1 = r['filenames'], r[vars[0]]
if len(vars)==2:
file, p1, p2 = r['filenames'], r[vars[0]], r[vars[1]]
if len(vars)==3:
file, p1, p2, p3 = \
r['filenames'], r[vars[0]], r[vars[1]], r[vars[2]]
if len(vars)==4:
file, p1, p2, p3, p4 = \
r['filenames'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]]
if len(vars)==5:
file, p1, p2, p3, p4, p5 = \
r['filenames'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[vars[4]]
if len(vars)==6:
file, p1, p2, p3, p4, p5, p6 = \
r['filenames'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[vars[4]], r[vars[5]]
if len(vars)==7:
file, p1, p2, p3, p4, p5, p6, p7 = \
r['filenames'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[vars[4]], r[vars[5]], r[vars[6]]
if len(vars)==8:
file, p1, p2, p3, p4, p5, p6, p7, p8 = \
r['filenames'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[vars[4]], r[vars[5]], r[vars[6]], r[vars[7]]
elif len(vars)==9:
file, p1, p2, p3, p4, p5, p6, p7, p8, p9 = \
r['filenames'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[vars[4]], r[vars[5]], r[vars[6]], r[vars[7]], r[vars[8]]
if greyscale==True:
im = Image.open(file).convert('LA')
#im = im.resize((IM_HEIGHT, IM_HEIGHT))
im = np.array(im)[:,:,0]
nx,ny = np.shape(im)
if (nx!=tilesize) or (ny!=tilesize):
im = im[int(nx/2)-int(tilesize/2):int(nx/2)+int(tilesize/2), int(ny/2)-int(tilesize/2):int(ny/2)+int(tilesize/2)]
else:
im = Image.open(file)
#im = im.resize((IM_HEIGHT, IM_HEIGHT))
im = np.array(im)
nx,ny,nz = np.shape(im)
if (nx!=tilesize) or (ny!=tilesize):
im = im[int(nx/2)-int(tilesize/2):int(nx/2)+int(tilesize/2), int(ny/2)-int(tilesize/2):int(ny/2)+int(tilesize/2)]
if standardize==True:
im = do_standardize(im)
else:
im = np.array(im) / 255.0
#if np.ndim(im)==2:
# im = np.dstack((im, im , im)) ##np.expand_dims(im[:,:,0], axis=2)
#im = im[:,:,:3]
if greyscale==True:
if do_aug==True:
aug = apply_aug(im)
images.append(aug)
if len(vars)==1:
p1s.append([p1 for k in range(2)])
elif len(vars)==2:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
elif len(vars)==3:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]);
elif len(vars)==4:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
elif len(vars)==5:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
p5s.append([p5 for k in range(2)]);
elif len(vars)==6:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
p5s.append([p5 for k in range(2)]); p6s.append([p6 for k in range(2)])
elif len(vars)==7:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
p5s.append([p5 for k in range(2)]); p6s.append([p6 for k in range(2)])
p7s.append([p7 for k in range(2)]);
elif len(vars)==8:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
p5s.append([p5 for k in range(2)]); p6s.append([p6 for k in range(2)])
p7s.append([p7 for k in range(2)]); p8s.append([p8 for k in range(2)])
elif len(vars)==9:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
p5s.append([p5 for k in range(2)]); p6s.append([p6 for k in range(2)])
p7s.append([p7 for k in range(2)]); p8s.append([p8 for k in range(2)])
p9s.append([p9 for k in range(2)])
else:
images.append(np.expand_dims(im, axis=2))
if len(vars)==1:
p1s.append(p1)
elif len(vars)==2:
p1s.append(p1); p2s.append(p2)
elif len(vars)==3:
p1s.append(p1); p2s.append(p2)
p3s.append(p3);
elif len(vars)==4:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
elif len(vars)==5:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
p5s.append(p5);
elif len(vars)==6:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
p5s.append(p5); p6s.append(p6)
elif len(vars)==7:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
p5s.append(p5); p6s.append(p6)
p7s.append(p7);
elif len(vars)==8:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
p5s.append(p5); p6s.append(p6)
p7s.append(p7); p8s.append(p8)
elif len(vars)==9:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
p5s.append(p5); p6s.append(p6)
p7s.append(p7); p8s.append(p8)
p9s.append(p9)
else:
if do_aug==True:
aug = apply_aug(im)
images.append(aug)
if len(vars)==1:
p1s.append([p1 for k in range(2)])
elif len(vars)==2:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
elif len(vars)==3:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]);
elif len(vars)==4:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
elif len(vars)==5:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
p5s.append([p5 for k in range(2)]);
elif len(vars)==6:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
p5s.append([p5 for k in range(2)]); p6s.append([p6 for k in range(2)])
elif len(vars)==7:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
p5s.append([p5 for k in range(2)]); p6s.append([p6 for k in range(2)])
p7s.append([p7 for k in range(2)]);
elif len(vars)==8:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
p5s.append([p5 for k in range(2)]); p6s.append([p6 for k in range(2)])
p7s.append([p7 for k in range(2)]); p8s.append([p8 for k in range(2)])
elif len(vars)==9:
p1s.append([p1 for k in range(2)]); p2s.append([p2 for k in range(2)])
p3s.append([p3 for k in range(2)]); p4s.append([p4 for k in range(2)])
p5s.append([p5 for k in range(2)]); p6s.append([p6 for k in range(2)])
p7s.append([p7 for k in range(2)]); p8s.append([p8 for k in range(2)])
p9s.append([p9 for k in range(2)])
else:
images.append(im)
if len(vars)==1:
p1s.append(p1)
elif len(vars)==2:
p1s.append(p1); p2s.append(p2)
elif len(vars)==3:
p1s.append(p1); p2s.append(p2)
p3s.append(p3);
elif len(vars)==4:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
elif len(vars)==5:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
p5s.append(p5);
elif len(vars)==6:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
p5s.append(p5); p6s.append(p6)
elif len(vars)==7:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
p5s.append(p5); p6s.append(p6)
p7s.append(p7);
elif len(vars)==8:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
p5s.append(p5); p6s.append(p6)
p7s.append(p7); p8s.append(p8)
elif len(vars)==9:
p1s.append(p1); p2s.append(p2)
p3s.append(p3); p4s.append(p4)
p5s.append(p5); p6s.append(p6)
p7s.append(p7); p8s.append(p8)
p9s.append(p9)
if len(images) >= batch_size:
if len(vars)==1:
# if len(CS)==0:
p1s = np.squeeze(np.array(p1s))
# else:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
if do_aug==True:
if len(images) >= batch_size:
if greyscale==False:
images = np.array(np.vstack(images))
else:
images = np.expand_dims(np.array(np.vstack(images)), axis=-1)
p1s = np.expand_dims(np.vstack(p1s).flatten(),axis=-1)
yield images,[p1s]
else:
if len(images) >= batch_size:
#p1s = np.expand_dims(np.vstack(p1s).flatten(),axis=-1)
yield np.array(images),[np.array(p1s)]
images, p1s = [], []
elif len(vars)==2:
# if len(CS)==0:
p1s = np.squeeze(np.array(p1s))
p2s = np.squeeze(np.array(p2s))
# else:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
if do_aug==True:
if len(images) >= batch_size:
if greyscale==False:
images = np.array(np.vstack(images))
else:
images = np.expand_dims(np.array(np.vstack(images)), axis=-1)
p1s = np.expand_dims(np.vstack(p1s).flatten(),axis=-1)
p2s = np.expand_dims(np.vstack(p2s).flatten(),axis=-1)
yield images,[p1s, p2s]
else:
if len(images) >= batch_size:
yield np.array(images),[np.array(p1s), np.array(p2s)]
images, p1s, p2s = [], [], []
elif len(vars)==3:
# if len(CS)==0:
p1s = np.squeeze(np.array(p1s))
p2s = np.squeeze(np.array(p2s))
p3s = np.squeeze(np.array(p3s))
# else:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
if do_aug==True:
if len(images) >= batch_size:
if greyscale==False:
images = np.array(np.vstack(images))
else:
images = np.expand_dims(np.array(np.vstack(images)), axis=-1)
p1s = np.expand_dims(np.vstack(p1s).flatten(),axis=-1)
p2s = np.expand_dims(np.vstack(p2s).flatten(),axis=-1)
p3s = np.expand_dims(np.vstack(p3s).flatten(),axis=-1)
yield images,[p1s, p2s, p3s]
else:
if len(images) >= batch_size:
yield np.array(images),[np.array(p1s), np.array(p2s), np.array(p3s)]
images, p1s, p2s, p3s = [], [], [], []
elif len(vars)==4:
# if len(CS)==0:
p1s = np.squeeze(np.array(p1s))
p2s = np.squeeze(np.array(p2s))
p3s = np.squeeze(np.array(p3s))
p4s = np.squeeze(np.array(p4s))
# else:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
if do_aug==True:
if len(images) >= batch_size:
if greyscale==False:
images = np.array(np.vstack(images))
else:
images = np.expand_dims(np.array(np.vstack(images)), axis=-1)
p1s = np.expand_dims(np.vstack(p1s).flatten(),axis=-1)
p2s = np.expand_dims(np.vstack(p2s).flatten(),axis=-1)
p3s = np.expand_dims(np.vstack(p3s).flatten(),axis=-1)
p4s = np.expand_dims(np.vstack(p4s).flatten(),axis=-1)
yield images,[p1s, p2s, p3s, p4s]
else:
if len(images) >= batch_size:
yield np.array(images),[np.array(p1s), np.array(p2s), np.array(p3s),
np.array(p4s)]
images, p1s, p2s, p3s, p4s = [], [], [], [], []
elif len(vars)==5:
# if len(CS)==0:
p1s = np.squeeze(np.array(p1s))
p2s = np.squeeze(np.array(p2s))
p3s = np.squeeze(np.array(p3s))
p4s = np.squeeze(np.array(p4s))
p5s = np.squeeze(np.array(p5s))
# else:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# p5s = np.squeeze(CS[4].transform(np.array(p5s).reshape(-1, 1)))
if do_aug==True:
if len(images) >= batch_size:
if greyscale==False:
images = np.array(np.vstack(images))
else:
images = np.expand_dims(np.array(np.vstack(images)), axis=-1)
p1s = np.expand_dims(np.vstack(p1s).flatten(),axis=-1)
p2s = np.expand_dims(np.vstack(p2s).flatten(),axis=-1)
p3s = np.expand_dims(np.vstack(p3s).flatten(),axis=-1)
p4s = np.expand_dims(np.vstack(p4s).flatten(),axis=-1)
p5s = np.expand_dims(np.vstack(p5s).flatten(),axis=-1)
yield images,[p1s, p2s, p3s, p4s, p5s]
else:
if len(images) >= batch_size:
yield np.array(images),[np.array(p1s), np.array(p2s), np.array(p3s),
np.array(p4s), np.array(p5s)]
images, p1s, p2s, p3s, p4s, p5s = [], [], [], [], [], []
elif len(vars)==6:
# if len(CS)==0:
p1s = np.squeeze(np.array(p1s))
p2s = np.squeeze(np.array(p2s))
p3s = np.squeeze(np.array(p3s))
p4s = np.squeeze(np.array(p4s))
p5s = np.squeeze(np.array(p5s))
p6s = np.squeeze(np.array(p6s))
# else:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# p5s = np.squeeze(CS[4].transform(np.array(p5s).reshape(-1, 1)))
# p6s = np.squeeze(CS[5].transform(np.array(p6s).reshape(-1, 1)))
if do_aug==True:
if len(images) >= batch_size:
if greyscale==False:
images = np.array(np.vstack(images))
else:
images = np.expand_dims(np.array(np.vstack(images)), axis=-1)
p1s = np.expand_dims(np.vstack(p1s).flatten(),axis=-1)
p2s = np.expand_dims(np.vstack(p2s).flatten(),axis=-1)
p3s = np.expand_dims(np.vstack(p3s).flatten(),axis=-1)
p4s = np.expand_dims(np.vstack(p4s).flatten(),axis=-1)
p5s = np.expand_dims(np.vstack(p5s).flatten(),axis=-1)
p6s = np.expand_dims(np.vstack(p6s).flatten(),axis=-1)
yield images,[p1s, p2s, p3s, p4s, p5s, p6s]
else:
if len(images) >= batch_size:
yield np.array(images),[np.array(p1s), np.array(p2s), np.array(p3s),
np.array(p4s), np.array(p5s), np.array(p6s)]
images, p1s, p2s, p3s, p4s, p5s, p6s = \
[], [], [], [], [], [], []
elif len(vars)==7:
# if len(CS)==0:
p1s = np.squeeze(np.array(p1s))
p2s = np.squeeze(np.array(p2s))
p3s = np.squeeze(np.array(p3s))
p4s = np.squeeze(np.array(p4s))
p5s = np.squeeze(np.array(p5s))
p6s = np.squeeze(np.array(p6s))
p7s = np.squeeze(np.array(p7s))
# else:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# p5s = np.squeeze(CS[4].transform(np.array(p5s).reshape(-1, 1)))
# p6s = np.squeeze(CS[5].transform(np.array(p6s).reshape(-1, 1)))
# p7s = np.squeeze(CS[6].transform(np.array(p7s).reshape(-1, 1)))
if do_aug==True:
if len(images) >= batch_size:
if greyscale==False:
images = np.array(np.vstack(images))
else:
images = np.expand_dims(np.array(np.vstack(images)), axis=-1)
p1s = np.expand_dims(np.vstack(p1s).flatten(),axis=-1)
p2s = np.expand_dims(np.vstack(p2s).flatten(),axis=-1)
p3s = np.expand_dims(np.vstack(p3s).flatten(),axis=-1)
p4s = np.expand_dims(np.vstack(p4s).flatten(),axis=-1)
p5s = np.expand_dims(np.vstack(p5s).flatten(),axis=-1)
p6s = np.expand_dims(np.vstack(p6s).flatten(),axis=-1)
p7s = np.expand_dims(np.vstack(p7s).flatten(),axis=-1)
yield images,[p1s, p2s, p3s, p4s, p5s, p6s, p7s]
else:
if len(images) >= batch_size:
yield np.array(images),[np.array(p1s), np.array(p2s), np.array(p3s),
np.array(p4s), np.array(p5s), np.array(p6s),
np.array(p7s)]
images, p1s, p2s, p3s, p4s, p5s, p6s, p7s = \
[], [], [], [], [], [], [], []
elif len(vars)==8:
# if len(CS)==0:
p1s = np.squeeze(np.array(p1s))
p2s = np.squeeze(np.array(p2s))
p3s = np.squeeze(np.array(p3s))
p4s = np.squeeze(np.array(p4s))
p5s = np.squeeze(np.array(p5s))
p6s = np.squeeze(np.array(p6s))
p7s = np.squeeze(np.array(p7s))
p8s = np.squeeze(np.array(p8s))
# else:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# p5s = np.squeeze(CS[4].transform(np.array(p5s).reshape(-1, 1)))
# p6s = np.squeeze(CS[5].transform(np.array(p6s).reshape(-1, 1)))
# p7s = np.squeeze(CS[6].transform(np.array(p7s).reshape(-1, 1)))
# p8s = np.squeeze(CS[7].transform(np.array(p8s).reshape(-1, 1)))
if do_aug==True:
if len(images) >= batch_size:
if greyscale==False:
images = np.array(np.vstack(images))
else:
images = np.expand_dims(np.array(np.vstack(images)), axis=-1)
p1s = np.expand_dims(np.vstack(p1s).flatten(),axis=-1)
p2s = np.expand_dims(np.vstack(p2s).flatten(),axis=-1)
p3s = np.expand_dims(np.vstack(p3s).flatten(),axis=-1)
p4s = np.expand_dims(np.vstack(p4s).flatten(),axis=-1)
p5s = np.expand_dims(np.vstack(p5s).flatten(),axis=-1)
p6s = np.expand_dims(np.vstack(p6s).flatten(),axis=-1)
p7s = np.expand_dims(np.vstack(p7s).flatten(),axis=-1)
p8s = np.expand_dims(np.vstack(p8s).flatten(),axis=-1)
yield images,[p1s, p2s, p3s, p4s, p5s, p6s, p7s, p8s]
else:
if len(images) >= batch_size:
yield np.array(images),[np.array(p1s), np.array(p2s), np.array(p3s),
np.array(p4s), np.array(p5s), np.array(p6s),
np.array(p7s), np.array(p8s)]
images, p1s, p2s, p3s, p4s, p5s, p6s, p7s, p8s = \
[], [], [], [], [], [], [], [], []
elif len(vars)==9:
# if len(CS)==0:
p1s = np.squeeze(np.array(p1s))
p2s = np.squeeze(np.array(p2s))
p3s = np.squeeze(np.array(p3s))
p4s = np.squeeze(np.array(p4s))
p5s = np.squeeze(np.array(p5s))
p6s = np.squeeze(np.array(p6s))
p7s = np.squeeze(np.array(p7s))
p8s = np.squeeze(np.array(p8s))
p9s = np.squeeze(np.array(p9s))
# else:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# p5s = np.squeeze(CS[4].transform(np.array(p5s).reshape(-1, 1)))
# p6s = np.squeeze(CS[5].transform(np.array(p6s).reshape(-1, 1)))
# p7s = np.squeeze(CS[6].transform(np.array(p7s).reshape(-1, 1)))
# p8s = np.squeeze(CS[7].transform(np.array(p8s).reshape(-1, 1)))
# p9s = np.squeeze(CS[8].transform(np.array(p9s).reshape(-1, 1)))
try:
if do_aug==True:
if len(images) >= batch_size:
if greyscale==False:
images = np.array(np.vstack(images))
else:
images = np.expand_dims(np.array(np.vstack(images)), axis=-1)
p1s = np.expand_dims(np.vstack(p1s).flatten(),axis=-1)
p2s = np.expand_dims(np.vstack(p2s).flatten(),axis=-1)
p3s = np.expand_dims(np.vstack(p3s).flatten(),axis=-1)
p4s = np.expand_dims(np.vstack(p4s).flatten(),axis=-1)
p5s = np.expand_dims(np.vstack(p5s).flatten(),axis=-1)
p6s = np.expand_dims(np.vstack(p6s).flatten(),axis=-1)
p7s = np.expand_dims(np.vstack(p7s).flatten(),axis=-1)
p8s = np.expand_dims(np.vstack(p8s).flatten(),axis=-1)
p9s = np.expand_dims(np.vstack(p9s).flatten(),axis=-1)
yield images,[p1s, p2s, p3s, p4s, p5s, p6s, p7s, p8s, p9s]
else:
if len(images) >= batch_size:
yield np.array(images),[np.array(p1s), np.array(p2s), np.array(p3s),
np.array(p4s), np.array(p5s), np.array(p6s),
np.array(p7s), np.array(p8s), np.array(p9s)]
except GeneratorExit:
print("")
images, p1s, p2s, p3s, p4s, p5s, p6s, p7s, p8s, p9s = \
[], [], [], [], [], [], [], [], [], []
if not for_training:
break
###===================================================
def get_data_generator_1image(df, indices, for_training, ID_MAP,
var, batch_size, greyscale, do_aug,
standardize, tilesize):
"""
This function creates a dataset generator consisting of batches of images
and corresponding one-hot-encoded labels describing the sediment in each image
"""
try:
ID_MAP2 = dict((g, i) for i, g in ID_MAP.items())
except:
ID_MAP = dict(zip(np.arange(ID_MAP), [str(k) for k in range(ID_MAP)]))
ID_MAP2 = dict((g, i) for i, g in ID_MAP.items())
images, pops = [], []
while True:
for i in indices:
r = df.iloc[i]
file, pop = r['filenames'], r[var]
# if greyscale==True:
# im = Image.open(file).convert('LA')
# else:
# im = Image.open(file)
# im = im.resize((IM_HEIGHT, IM_HEIGHT))
# im = np.array(im) / 255.0
if greyscale==True:
im = Image.open(file).convert('LA')
#im = im.resize((IM_HEIGHT, IM_HEIGHT))
im = np.array(im)[:,:,0]
nx,ny = np.shape(im)
if (nx!=tilesize) or (ny!=tilesize):
im = im[int(nx/2)-int(tilesize/2):int(nx/2)+int(tilesize/2), int(ny/2)-int(tilesize/2):int(ny/2)+int(tilesize/2)]
else:
im = Image.open(file)
#im = im.resize((IM_HEIGHT, IM_HEIGHT))
im = np.array(im)
nx,ny,nz = np.shape(im)
if (nx!=tilesize) or (ny!=tilesize):
im = im[int(nx/2)-int(tilesize/2):int(nx/2)+int(tilesize/2), int(ny/2)-int(tilesize/2):int(ny/2)+int(tilesize/2)]
if standardize==True:
im = do_standardize(im)
# if np.ndim(im)==2:
# im = np.dstack((im, im , im)) ##np.expand_dims(im[:,:,0], axis=2)
# im = im[:,:,:3]
if greyscale==True:
if do_aug==True:
aug = apply_aug(im[:,:,0])
images.append(aug)
pops.append([to_categorical(pop, len(ID_MAP2)) for k in range(2)]) #3
else:
images.append(np.expand_dims(im[:,:,0], axis=2))
else:
if do_aug==True:
aug = apply_aug(im)
images.append(aug)
pops.append([to_categorical(pop, len(ID_MAP2)) for k in range(2)])
else:
images.append(im)
pops.append(to_categorical(pop, len(ID_MAP2)))
try:
if do_aug==True:
if len(images) >= batch_size:
if greyscale==False:
images = np.array(np.vstack(images))
pops = np.array(np.vstack(pops))
else:
images = np.expand_dims(np.array(np.vstack(images)), axis=-1)
pops = np.array(np.vstack(pops))
yield images, pops
images, pops = [], []
else:
if len(images) >= batch_size:
yield np.squeeze(np.array(images)),np.array(pops) #[np.array(pops)]
images, pops = [], []
except GeneratorExit:
print("") #pass
if not for_training:
break
###===================================================
### PLOT TRAINING HISTORY FUNCTIONS
def plot_train_history_1var(history):
"""
This function plots loss and accuracy curves from the model training
"""
fig, axes = plt.subplots(1, 2, figsize=(10, 10))
print(history.history.keys())
axes[0].plot(history.history['loss'], label='Training loss')
axes[0].plot(history.history['val_loss'], label='Validation loss')
axes[0].set_xlabel('Epochs')
axes[0].legend()
try:
axes[1].plot(history.history['acc'], label='pop train accuracy')
axes[1].plot(history.history['val_acc'], label='pop test accuracy')
except:
axes[1].plot(history.history['accuracy'], label='pop train accuracy')
axes[1].plot(history.history['val_accuracy'], label='pop test accuracy')
axes[1].set_xlabel('Epochs')
axes[1].legend()
###===================================================
def plot_train_history_Nvar(history, varuse, N):
"""
This function makes a plot of error train/validation history for 9 variables,
plus overall loss functions
"""
fig, axes = plt.subplots(1, N+1, figsize=(20, 5))
for k in range(N):
try:
axes[k].plot(history.history[varuse[k]+'_output_mean_absolute_error'],
label=varuse[k]+' Train MAE')
axes[k].plot(history.history['val_'+varuse[k]+'_output_mean_absolute_error'],
label=varuse[k]+' Val MAE')
except:
axes[k].plot(history.history[varuse[k]+'_output_mae'],
label=varuse[k]+' Train MAE')
axes[k].plot(history.history['val_'+varuse[k]+'_output_mae'],
label=varuse[k]+' Val MAE')
axes[k].set_xlabel('Epochs')
axes[k].legend()
axes[N].plot(history.history['loss'], label='Training loss')
axes[N].plot(history.history['val_loss'], label='Validation loss')
axes[N].set_xlabel('Epochs')
axes[N].legend()
###===================================================
def plot_train_history_1var_mae(history):
"""
This function plots loss and accuracy curves from the model training
"""
print(history.history.keys())
fig, axes = plt.subplots(1, 2, figsize=(10, 10))
axes[0].plot(history.history['loss'], label='Training loss')
axes[0].plot(history.history['val_loss'],
label='Validation loss')
axes[0].set_xlabel('Epochs')
axes[0].legend()
try:
axes[1].plot(history.history['mean_absolute_error'],
label='pop train MAE')
axes[1].plot(history.history['val_mean_absolute_error'],
label='pop test MAE')
except:
axes[1].plot(history.history['mae'], label='pop train MAE')
axes[1].plot(history.history['val_mae'], label='pop test MAE')
axes[1].set_xlabel('Epochs')
axes[1].legend()
###===================================================
### PLOT CONFUSION MATRIX FUNCTIONS
###===================================================
def plot_confusion_matrix(cm, classes,
normalize=False,
cmap=plt.cm.Purples,
dolabels=True):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
cm[np.isnan(cm)] = 0
plt.imshow(cm, interpolation='nearest', cmap=cmap, vmax=1, vmin=0)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
if dolabels==True:
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, fontsize=3) #, rotation=60
plt.yticks(tick_marks, classes, fontsize=3)
plt.ylabel('True label',fontsize=4)
plt.xlabel('Estimated label',fontsize=4)
else:
plt.axis('off')
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if cm[i, j]>0:
plt.text(j, i, str(cm[i, j])[:4],fontsize=5,
horizontalalignment="center",
color="white" if cm[i, j] > 0.6 else "black")
#plt.tight_layout()
plt.xlim(-0.5, len(classes))
plt.ylim(-0.5, len(classes))
return cm
###===================================================
def plot_confmat(y_pred, y_true, prefix, classes):
"""
This function generates and plots a confusion matrix
"""
base = prefix+'_'
y = y_pred.copy()
del y_pred
l = y_true.copy()
del y_true
l = l.astype('float')
ytrue = l.flatten()
ypred = y.flatten()
ytrue = ytrue[~np.isnan(ytrue)]
ypred = ypred[~np.isnan(ypred)]
cm = confusion_matrix(ytrue, ypred)
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
cm[np.isnan(cm)] = 0
fig=plt.figure()
plt.subplot(221)
plot_confusion_matrix(cm, classes=classes)
###===================================================
### PREDICTION FUNCTIONS
def predict_test_train_cat(train_df, test_df, train_idx, test_idx, var, SM,
classes, weights_path, greyscale, name, do_aug, tilesize):
"""
This function creates makes predictions on test and train data,
prints a classification report, and prints confusion matrices
"""
if type(SM) == list:
counter = 0
for s,wp in zip(SM, weights_path):
exec('SM[counter].load_weights(wp)')
counter += 1
else:
SM.load_weights(weights_path)
##==============================================
## make predictions on training data
for_training = False
train_gen = get_data_generator_1image(train_df, train_idx, for_training,
len(classes), var, len(train_idx), greyscale, #np.min((200, len(train_idx))),
do_aug, standardize, tilesize)
x_train, (trueT)= next(train_gen)
PT = []
if type(SM) == list:
#counter = 0
for s in SM:
tmp=s.predict(x_train, batch_size=8)
exec(
'PT.append(np.asarray(np.squeeze(tmp)))'
)
del tmp
predT = np.median(PT, axis=0)
#predT = np.squeeze(np.asarray(PT))
del PT
K.clear_session()
gc.collect()
else:
predT = SM.predict(x_train, batch_size=8)
#predT = np.asarray(predT).argmax(axis=-1)
del train_gen, x_train
if test_df is not None:
## make predictions on testing data
for_training = False
do_aug = False
test_gen = get_data_generator_1image(test_df, test_idx, for_training,
len(classes), var, len(test_idx), greyscale, #np.min((200, len(test_idx))),
do_aug, standardize, tilesize) #no augmentation on validation data
x_test, (true)= next(test_gen)
PT = []
if type(SM) == list:
#counter = 0
for s in SM:
tmp=s.predict(x_test, batch_size=8)
exec(
'PT.append(np.asarray(np.squeeze(tmp)))'
)
del tmp
pred = np.median(PT, axis=0)
#pred = np.squeeze(np.asarray(PT))
del PT
K.clear_session()
gc.collect()
else:
pred = SM.predict(x_test, batch_size=8) #1)
#pred = np.asarray(pred).argmax(axis=-1)
del test_gen, x_test
trueT = np.squeeze(np.asarray(trueT).argmax(axis=-1) )
predT = np.squeeze(np.asarray(predT).argmax(axis=-1))#[0])
if test_df is not None:
pred = np.squeeze(np.asarray(pred).argmax(axis=-1))#[0])
true = np.squeeze(np.asarray(true).argmax(axis=-1) )
##==============================================
## print a classification report to screen, showing f1, precision, recall and accuracy
print("==========================================")
print("Classification report for "+var)
print(classification_report(true, pred))
fig = plt.figure()
##==============================================
## create figures showing confusion matrices for train and test data sets
if type(SM) == list:
if test_df is not None:
plot_confmat(pred, true, var, classes)
plt.savefig(weights_path[0].replace('.hdf5','_cm.png').\
replace('batch','_'.join(np.asarray(BATCH_SIZE, dtype='str'))),
dpi=300, bbox_inches='tight')
plt.close('all')
plot_confmat(predT, trueT, var+'T',classes)
plt.savefig(weights_path[0].replace('.hdf5','_cmT.png').\
replace('batch','_'.join(np.asarray(BATCH_SIZE, dtype='str'))),
dpi=300, bbox_inches='tight')
plt.close('all')
else:
if test_df is not None:
plot_confmat(pred, true, var, classes)
plt.savefig(weights_path.replace('.hdf5','_cm.png'),
dpi=300, bbox_inches='tight')
plt.close('all')
plot_confmat(predT, trueT, var+'T',classes)
plt.savefig(weights_path.replace('.hdf5','_cmT.png'),
dpi=300, bbox_inches='tight')
plt.close('all')
plt.close()
del fig
###===================================================
def predict_train_siso_simo(a, b, vars,
SM, weights_path, name, mode, greyscale,
dropout,do_aug, standardize,#CS,# scale,
count_in):
"""
This function creates makes predcitions on test and train data
"""
##==============================================
## make predictions on training data
if type(SM) == list:
counter = 0
for s,wp in zip(SM, weights_path):
exec('SM[counter].load_weights(wp)')
counter += 1
else:
SM.load_weights(weights_path)
# if scale == True:
#
# if len(vars)>1:
# counter = 0
# for v in vars:
# exec(
# v+\
# '_trueT = np.squeeze(CS[counter].inverse_transform(b[counter].reshape(-1,1)))'
# )
# counter +=1
# else:
# exec(
# vars[0]+\
# '_trueT = np.squeeze(CS[0].inverse_transform(b[0].reshape(-1,1)))'
# )
#
# else:
if len(vars)>1:
counter = 0
for v in vars:
exec(
v+\
'_trueT = np.squeeze(b[counter])'
)
counter +=1
else:
exec(
vars[0]+\
'_trueT = np.squeeze(b)'
)
del b
for v in vars:
exec(v+'_PT = []')
# if scale == True:
#
# if type(SM) == list:
# counter = 0 #model iterator
# for s in SM:
# train_vals=s.predict(a, batch_size=8)
#
# if len(vars)>1:
# counter2 = 0 #variable iterator
# for v in vars:
# exec(
# v+\
# '_PT.append(np.squeeze(CS[counter].inverse_transform(train_vals[counter2].reshape(-1,1))))'
# )
# counter2 +=1
# else:
# exec(
# vars[0]+\
# '_PT.append(np.asarray(np.squeeze(CS[0].inverse_transform(train_vals.reshape(-1,1)))))'
# )
#
# del train_vals
#
# if len(vars)>1:
# #counter = 0
# for v in vars:
# exec(
# v+\
# '_PT = np.median('+v+'_PT, axis=0)'
# )
# #counter +=1
# else:
# exec(
# vars[0]+\
# '_PT = np.median('+v+'_PT, axis=0)'
# )
#
# else:
# train_vals = SM.predict(a, batch_size=8) #128)
#
# if len(vars)>1:
# counter = 0
# for v in vars:
# exec(
# v+\
# '_PT.append(np.squeeze(CS[counter].inverse_transform(train_vals[counter].reshape(-1,1))))'
# )
# counter +=1
# else:
# exec(
# vars[0]+\
# '_PT.append(np.asarray(np.squeeze(CS[0].inverse_transform(train_vals.reshape(-1,1)))))'
# )
#
# del train_vals
#
# else:
if type(SM) == list:
#counter = 0
for s in SM:
train_vals=s.predict(a, batch_size=8)
if len(vars)>1:
counter2 = 0
for v in vars:
exec(
v+\
'_PT.append(np.squeeze(train_vals[counter2]))'
)
counter2 +=1
else:
exec(
vars[0]+\
'_PT.append(np.asarray(train_vals))'
)
del train_vals
if len(vars)>1:
#counter = 0
for v in vars:
exec(
v+\
'_PT = np.median('+v+'_PT, axis=0)'
)
#counter +=1
else:
exec(
vars[0]+\
'_PT = np.median('+v+'_PT, axis=0)'
)
else:
train_vals = SM.predict(a, batch_size=1)#8) #128)
if len(vars)>1:
counter = 0
for v in vars:
exec(
v+\
'_PT.append(np.squeeze(train_vals[counter]))'
)
counter +=1
else:
exec(
vars[0]+\
'_PT.append(np.asarray(np.squeeze(train_vals)))'
)
del train_vals
if len(vars)>1:
for k in range(len(vars)):
exec(vars[k]+'_predT = np.squeeze(np.asarray('+vars[k]+'_PT))')
else:
exec(vars[0]+'_predT = np.squeeze(np.asarray('+vars[0]+'_PT))')
for v in vars:
exec('del '+v+'_PT')
del a #train_gen,
if len(vars)==9:
nrows = 3; ncols = 3
elif len(vars)==8:
nrows = 2; ncols = 4
elif len(vars)==7:
nrows = 3; ncols = 3
elif len(vars)==6:
nrows = 3; ncols = 2
elif len(vars)==5:
nrows = 3; ncols = 2
elif len(vars)==4:
nrows = 2; ncols = 2
elif len(vars)==3:
nrows = 2; ncols = 2
elif len(vars)==2:
nrows = 1; ncols = 2
elif len(vars)==1:
nrows = 1; ncols = 1
out = dict()
## make a plot
fig = plt.figure(figsize=(6*nrows,6*ncols))
labs = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
for k in range(1,1+(nrows*ncols)):
# try:
plt.subplot(nrows,ncols,k)
x1 = eval(vars[k-1]+'_trueT')
y1 = eval(vars[k-1]+'_predT')
out[vars[k-1]+'_trueT'] = eval(vars[k-1]+'_trueT')
out[vars[k-1]+'_predT'] = eval(vars[k-1]+'_predT')
plt.plot(x1, y1, 'ko', markersize=5)
plt.plot([ np.min(np.hstack((x1,y1))), np.max(np.hstack((x1,y1)))],
[ np.min(np.hstack((x1,y1))), np.max(np.hstack((x1,y1)))],
'k', lw=2)
plt.text(np.nanmin(x1), 0.7*np.max(np.hstack((x1,y1))),'Train : '+\
str(np.nanmean(100*(np.abs(y1-x1) / x1)))[:5]+\
' %', fontsize=10)
plt.title(r''+labs[k-1]+') '+vars[k-1], fontsize=8, loc='left')
#varstring = ''.join([str(k)+'_' for k in vars])
varstring = str(len(vars))+'vars'
# except:
# pass
if type(SM) == list:
plt.savefig(weights_path[0].replace('.hdf5', '_skill_ensemble'+str(count_in)+'.png').\
replace('batch','_'.join(np.asarray(BATCH_SIZE, dtype='str'))),
dpi=300, bbox_inches='tight')
else:
plt.savefig(weights_path.replace('.hdf5', '_skill'+str(count_in)+'.png'),
dpi=300, bbox_inches='tight')
plt.close()
del fig
np.savez_compressed(weights_path.replace('.hdf5', '_out'+str(count_in)+'.npz'),**out)
del out
if len(vars)==9:
nrows = 3; ncols = 3
elif len(vars)==8:
nrows = 2; ncols = 4
elif len(vars)==7:
nrows = 3; ncols = 3
elif len(vars)==6:
nrows = 3; ncols = 2
elif len(vars)==5:
nrows = 3; ncols = 2
elif len(vars)==4:
nrows = 2; ncols = 2
elif len(vars)==3:
nrows = 2; ncols = 2
elif len(vars)==2:
nrows = 1; ncols = 2
elif len(vars)==1:
nrows = 1; ncols = 1
out = dict()
## make a plot
fig = plt.figure(figsize=(6*nrows,6*ncols))
labs = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
for k in range(1,1+(nrows*ncols)):
# try:
plt.subplot(nrows,ncols,k)
x1 = eval(vars[k-1]+'_trueT')
y1 = eval(vars[k-1]+'_predT')
out[vars[k-1]+'_trueT'] = eval(vars[k-1]+'_trueT')
out[vars[k-1]+'_predT'] = eval(vars[k-1]+'_predT')
plt.plot(x1, y1, 'ko', markersize=5)
plt.plot([ np.min(np.hstack((x1,y1))), np.max(np.hstack((x1,y1)))],
[ np.min(np.hstack((x1,y1))), np.max(np.hstack((x1,y1)))],
'k', lw=2)
plt.text(np.nanmin(x1), 0.7*np.max(np.hstack((x1,y1))),'Train : '+\
str(np.nanmean(100*(np.abs(y1-x1) / x1)))[:5]+\
' %', fontsize=10)
plt.title(r''+labs[k-1]+') '+vars[k-1], fontsize=8, loc='left')
#varstring = ''.join([str(k)+'_' for k in vars])
varstring = str(len(vars))+'vars'
# except:
# pass
if type(SM) == list:
plt.savefig(weights_path[0].replace('.hdf5', '_skill_ensemble'+str(count_in)+'.png').\
replace('batch','_'.join(np.asarray(BATCH_SIZE, dtype='str'))),
dpi=300, bbox_inches='tight')
else:
plt.savefig(weights_path.replace('.hdf5', '_skill'+str(count_in)+'.png'),
dpi=300, bbox_inches='tight')
plt.close()
del fig
np.savez_compressed(weights_path.replace('.hdf5', '_out'+str(count_in)+'.npz'),**out)
del out
###============================================================
def plot_all_save_all(weights_path, vars):
if type(weights_path) == list:
npz_files = glob(weights_path[0].replace('.hdf5', '*.npz'))
else:
npz_files = glob(weights_path.replace('.hdf5', '*.npz'))
npz_files = [n for n in npz_files if '_all.npz' not in n]
print("Found %i npz files "%(len(npz_files)))
if len(vars)==9:
nrows = 3; ncols = 3
elif len(vars)==8:
nrows = 2; ncols = 4
elif len(vars)==7:
nrows = 3; ncols = 3
elif len(vars)==6:
nrows = 3; ncols = 2
elif len(vars)==5:
nrows = 3; ncols = 2
elif len(vars)==4:
nrows = 2; ncols = 2
elif len(vars)==3:
nrows = 2; ncols = 2
elif len(vars)==2:
nrows = 1; ncols = 2
elif len(vars)==1:
nrows = 1; ncols = 1
## make a plot
fig = plt.figure(figsize=(6*nrows,6*ncols))
for counter,file in enumerate(npz_files):
out = dict()
with np.load(file, allow_pickle=True) as dat:
for k in dat.keys():
out[k] = dat[k]
labs = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
X = []; Y=[]
Xt = []; Yt=[]
for k in range(1,1+(nrows*ncols)):
# try:
plt.subplot(nrows,ncols,k)
x1 = out[vars[k-1]+'_trueT']
y1 = out[vars[k-1]+'_predT']
X.append(x1.flatten()); Y.append(y1.flatten())
del x1, y1
x1 = np.array(X)
y1 = np.array(Y)
plt.plot(x1, y1, 'ko', markersize=5)
if counter==len(npz_files)-1:
plt.plot([ np.min(np.hstack((x1,y1))), np.max(np.hstack((x1,y1)))],
[ np.min(np.hstack((x1,y1))), np.max(np.hstack((x1,y1)))],
'k', lw=2)
plt.text(np.nanmin(x1), 0.8*np.max(np.hstack((x1,y1))),'Train : '+\
str(np.mean(100*(np.abs(y1-x1) / x1)))[:5]+\
' %', fontsize=12, color='r')
plt.title(r''+labs[k-1]+') '+vars[k-1], fontsize=8, loc='left')
out[vars[k-1]+'_trueT'] = x1 #eval(vars[k-1]+'_trueT')
out[vars[k-1]+'_predT'] = y1 #eval(vars[k-1]+'_predT')
if counter==len(npz_files)-1:
plt.plot([ np.min(np.hstack((x1,y1))), np.max(np.hstack((x1,y1)))],
[ np.min(np.hstack((x1,y1))), np.max(np.hstack((x1,y1)))],
'k', lw=2)
plt.text(np.nanmin(x1), 0.8*np.max(np.hstack((x1,y1))),'Train : '+\
str(np.mean(100*(np.abs(y1-x1) / x1)))[:5]+\
' %', fontsize=12, color='r')
try:
plt.text(np.nanmin(x2), 0.8*np.max(np.hstack((x2,y2))),'Test : '+\
str(np.mean(100*(np.abs(y2-x2) / x2)))[:5]+\
' %', fontsize=12, color='r')
except:
pass
plt.title(r''+labs[k-1]+') '+vars[k-1], fontsize=8, loc='left')
if type(weights_path) == list:
plt.savefig(weights_path[0].replace('.hdf5', '_skill_ensemble.png').\
replace('batch','_'.join(np.asarray(BATCH_SIZE, dtype='str'))),
dpi=300, bbox_inches='tight')
else:
plt.savefig(weights_path.replace('.hdf5', '_skill.png'),
dpi=300, bbox_inches='tight')
plt.close()
del fig
np.savez_compressed(weights_path.replace('.hdf5', '_out_all.npz'),**out)
del out
###===================================================
### MISC. UTILITIES
def tidy(name,res_folder):
"""
This function moves training outputs to a specific folder
"""
pngfiles = glob('*'+name+'*.png')
jsonfiles = glob('*'+name+'*.json')
hfiles = glob('*'+name+'*.hdf5')
tfiles = glob('*'+name+'*.txt')
#pfiles = glob('*'+name+'*.pkl')
nfiles = glob('*'+name+'*.npz')
try:
[shutil.move(k, res_folder) for k in pngfiles]
[shutil.move(k, res_folder) for k in hfiles]
[shutil.move(k, res_folder) for k in jsonfiles]
[shutil.move(k, res_folder) for k in tfiles]
#[shutil.move(k, res_folder) for k in pfiles]
[shutil.move(k, res_folder) for k in nfiles]
except:
pass
###===================================================
def get_df(csvfile,fortrain=False):
"""
This function reads a csvfile with image names and labels
and returns random indices
"""
###===================================================
## read the data set in, clean and modify the pathnames so they are absolute
df = pd.read_csv(csvfile)
num_split = 50
if fortrain==False:
if len(df)>num_split:
#print('Spliting into chunks')
df = np.array_split(df, int(np.round(len(df)/num_split)))
split = True
else:
split = False
else:
split = False
if split:
for k in range(len(df)):
df[k]['filenames'] = [k.strip() for k in df[k]['filenames']]
else:
df['filenames'] = [k.strip() for k in df['filenames']]
if split:
for k in range(len(df)):
df[k]['filenames'] = [os.getcwd()+os.sep+f.replace('\\',os.sep) for f in df[k]['filenames']]
else:
df['filenames'] = [os.getcwd()+os.sep+f.replace('\\',os.sep) for f in df['filenames']]
np.random.seed(2021)
if type(df)==list:
idx = [np.random.permutation(len(d)) for d in df]
else:
idx = np.random.permutation(len(df))
return idx, df, split
#
# ###===================================================
# def predict_test_siso_simo(a, b, vars,
# SM, weights_path, name, mode, greyscale,
# CS, dropout, scale, do_aug, standardize,
# count_in):
#
# #
# # ## make predictions on testing data
# # if d is not None:
# # do_aug = False
# # for_training = False
# # # test_gen = get_data_generator_Nvars_siso_simo(test_df, test_idx, for_training,
# # # vars, len(test_idx), greyscale, CS, do_aug, standardize) #np.min((200, len(test_idx)))
# # #
# # # x_test, vals = next(test_gen)
# #
# # if scale == True:
# #
# # if len(vars)>1:
# # counter = 0
# # for v in vars:
# # exec(
# # v+\
# # '_true = np.squeeze(CS[counter].inverse_transform(d[counter].reshape(-1,1)))'
# # )
# # counter +=1
# # else:
# # exec(
# # vars[0]+\
# # '_true = np.squeeze(CS[0].inverse_transform(d[0].reshape(-1,1)))'
# # )
# #
# # else:
# # if len(vars)>1:
# # counter = 0
# # for v in vars:
# # exec(
# # v+\
# # '_true = np.squeeze(d[counter])'
# # )
# # counter +=1
# # else:
# # exec(
# # vars[0]+\
# # '_true = np.squeeze(d)'
# # )
# #
# #
# # del d
# #
# # for v in vars:
# # exec(v+'_P = []')
# #
# # if scale == True:
# #
# # if type(SM) == list:
# # #counter = 0
# # for s in SM:
# # test_vals=s.predict(c, batch_size=8)
# #
# # if len(vars)>1:
# # counter = 0
# # for v in vars:
# # exec(
# # v+\
# # '_P.append(np.squeeze(CS[counter].inverse_transform(test_vals[counter].reshape(-1,1))))'
# # )
# # counter +=1
# # else:
# # exec(
# # vars[0]+\
# # '_P.append(np.asarray(np.squeeze(CS[0].inverse_transform(test_vals.reshape(-1,1)))))'
# # )
# #
# # del test_vals
# #
# # if len(vars)>1:
# # #counter = 0
# # for v in vars:
# # exec(
# # v+\
# # '_P = np.median('+v+'_P, axis=0)'
# # )
# # #counter +=1
# # else:
# # exec(
# # vars[0]+\
# # '_P = np.median('+v+'_P, axis=0)'
# # )
# #
# # else:
# #
# # test_vals = SM.predict(c, batch_size=8) #128)
# # if len(vars)>1:
# # counter = 0
# # for v in vars:
# # exec(
# # v+\
# # '_P.append(np.squeeze(CS[counter].inverse_transform(test_vals[counter].reshape(-1,1))))'
# # )
# # counter +=1
# # else:
# # exec(
# # vars[0]+\
# # '_P.append(np.asarray(np.squeeze(CS[0].inverse_transform(test_vals.reshape(-1,1)))))'
# # )
# #
# # del test_vals
# #
# #
# # else: #no scale
# #
# # if type(SM) == list:
# # counter = 0
# # for s in SM:
# # test_vals=s.predict(c, batch_size=8)
# #
# # if len(vars)>1:
# # counter = 0
# # for v in vars:
# # exec(
# # v+\
# # '_P.append(np.squeeze(test_vals[counter]))'
# # )
# # counter +=1
# # else:
# # exec(
# # vars[0]+\
# # '_P.append(np.asarray(np.squeeze(test_vals)))'
# # )
# #
# # del test_vals
# #
# # if len(vars)>1:
# # #counter = 0
# # for v in vars:
# # exec(
# # v+\
# # '_P = np.median('+v+'_P, axis=0)'
# # )
# # #counter +=1
# # else:
# # exec(
# # vars[0]+\
# # '_P = np.median('+v+'_P, axis=0)'
# # )
# #
# # else:
# #
# # test_vals = SM.predict(c, batch_size=8) #128)
# # if len(vars)>1:
# # counter = 0
# # for v in vars:
# # exec(
# # v+\
# # '_P.append(np.squeeze(test_vals[counter]))'
# # )
# # counter +=1
# # else:
# # exec(
# # vars[0]+\
# # '_P.append(np.asarray(np.squeeze(test_vals)))'
# # )
# #
# # # del test_vals
# #
# #
# # del c #test_gen,
#
# # if len(vars)>1:
# # for k in range(len(vars)):
# # exec(vars[k]+'_pred = np.squeeze(np.asarray('+vars[k]+'_P))')
# # else:
# # exec(vars[0]+'_pred = np.squeeze(np.asarray('+vars[0]+'_P))')
# #
# # for v in vars:
# # exec('del '+v+'_P')
#
# # ## write out results to text files
# # if len(vars)>1:
# # for k in range(len(vars)):
# # exec('np.savetxt("'+name+'_test'+vars[k]+'.txt", ('+vars[k]+'_pred))') #','+vars[k]+'_true))')
# # exec('np.savetxt("'+name+'_train'+vars[k]+'.txt", ('+vars[k]+'_predT))') #,'+vars[k]+'_trueT))')
# # np.savetxt(name+"_test_files.txt", np.asarray(test_df.files.values), fmt="%s")
# # np.savetxt(name+"_train_files.txt", np.asarray(train_df.files.values), fmt="%s")
# #
# # else:
# # exec('np.savetxt("'+name+'_test'+vars[0]+'.txt", ('+vars[0]+'_pred))') #','+vars[k]+'_true))')
# # exec('np.savetxt("'+name+'_train'+vars[0]+'.txt", ('+vars[0]+'_predT))') #,'+vars[k]+'_trueT))')
# # np.savetxt(name+"_test_files.txt", np.asarray(test_df.files.values), fmt="%s")
# # np.savetxt(name+"_train_files.txt", np.asarray(train_df.files.values), fmt="%s")
#
# if len(vars)==9:
# nrows = 3; ncols = 3
# elif len(vars)==8:
# nrows = 2; ncols = 4
# elif len(vars)==7:
# nrows = 3; ncols = 3
# elif len(vars)==6:
# nrows = 3; ncols = 2
# elif len(vars)==5:
# nrows = 3; ncols = 2
# elif len(vars)==4:
# nrows = 2; ncols = 2
# elif len(vars)==3:
# nrows = 2; ncols = 2
# elif len(vars)==2:
# nrows = 1; ncols = 2
# elif len(vars)==1:
# nrows = 1; ncols = 1
#
# out = dict()
#
# ## make a plot
# fig = plt.figure(figsize=(6*nrows,6*ncols))
# labs = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
# for k in range(1,1+(nrows*ncols)):
# # try:
# plt.subplot(nrows,ncols,k)
# x1 = eval(vars[k-1]+'_trueT')
# y1 = eval(vars[k-1]+'_predT')
# out[vars[k-1]+'_trueT'] = eval(vars[k-1]+'_trueT')
# out[vars[k-1]+'_predT'] = eval(vars[k-1]+'_predT')
#
# # z = np.polyfit(y1,x1, 1)
# # Z.append(z)
# #
# # y1 = np.polyval(z,y1)
# # y1 = np.abs(y1)
#
# plt.plot(x1, y1, 'ko', markersize=5)
# plt.plot([ np.min(np.hstack((x1,y1))), np.max(np.hstack((x1,y1)))],
# [ np.min(np.hstack((x1,y1))), np.max(np.hstack((x1,y1)))],
# 'k', lw=2)
# plt.text(np.nanmin(x1), 0.7*np.max(np.hstack((x1,y1))),'Train : '+\
# str(np.nanmean(100*(np.abs(y1-x1) / x1)))[:5]+\
# ' %', fontsize=10)
#
# # if test_vals is not None:
# # x2 = eval(vars[k-1]+'_true')
# # y2 = eval(vars[k-1]+'_pred')
# # # y2 = np.abs(np.polyval(z,y2))
# #
# # plt.plot(x2, y2, 'bx', markersize=5)
# #
# # if test_vals is not None:
# # plt.text(np.nanmin(x2), 0.75*np.max(np.hstack((x2,y2))),'Test : '+\
# # str(np.mean(100*(np.abs(y2-x2) / x2)))[:5]+\
# # ' %', fontsize=10, color='b')
# # else:
# # plt.text(np.nanmin(x1), 0.7*np.max(np.hstack((x1,y1))),''+\
# # str(np.mean(100*(np.abs(y1-x1) / x1)))[:5]+\
# # ' %', fontsize=10)
# plt.title(r''+labs[k-1]+') '+vars[k-1], fontsize=8, loc='left')
#
# #varstring = ''.join([str(k)+'_' for k in vars])
# varstring = str(len(vars))+'vars'
#
# # except:
# # pass
# if type(SM) == list:
# plt.savefig(weights_path[0].replace('.hdf5', '_skill_ensemble'+str(count_in)+'.png').\
# replace('batch','_'.join(np.asarray(BATCH_SIZE, dtype='str'))),
# dpi=300, bbox_inches='tight')
#
# else:
# plt.savefig(weights_path.replace('.hdf5', '_skill'+str(count_in)+'.png'),
# dpi=300, bbox_inches='tight')
#
# plt.close()
# del fig
#
# np.savez_compressed(weights_path.replace('.hdf5', '_out'+str(count_in)+'.npz'),**out)
# del out
#
# ###===================================================
# def predict_test_train_miso_mimo(train_df, test_df, train_idx, test_idx,
# vars, auxin, SM, weights_path, name, mode,
# greyscale, CS, CSaux):
# """
# This function creates makes predcitions on test and train data
# """
# ##==============================================
# ## make predictions on training data
#
# SM.load_weights(weights_path)
#
# train_gen = get_data_generator_Nvars_miso_mimo(train_df, train_idx, False,
# vars, auxin,aux_mean, aux_std, len(train_idx), greyscale)
#
# x_train, tmp = next(train_gen)
#
# if len(vars)>1:
# counter = 0
# for v in vars:
# exec(
# v+\
# '_trueT = np.squeeze(CS[counter].inverse_transform(tmp[counter].reshape(-1,1)))'
# )
# counter +=1
# else:
# exec(
# vars[0]+\
# '_trueT = np.squeeze(CS[0].inverse_transform(tmp[0].reshape(-1,1)))'
# )
#
# for v in vars:
# exec(v+'_PT = []')
#
# del tmp
# tmp = SM.predict(x_train, batch_size=8) #128)
# if len(vars)>1:
# counter = 0
# for v in vars:
# exec(
# v+\
# '_PT.append(np.squeeze(CS[counter].inverse_transform(tmp[counter].reshape(-1,1))))'
# )
# counter +=1
# else:
# exec(
# vars[0]+\
# '_PT.append(np.asarray(np.squeeze(CS[0].inverse_transform(tmp.reshape(-1,1)))))'
# )
#
#
# if len(vars)>1:
# for k in range(len(vars)):
# exec(
# vars[k]+\
# '_predT = np.squeeze(np.mean(np.asarray('+vars[k]+'_PT), axis=0))'
# )
# else:
# exec(
# vars[0]+\
# '_predT = np.squeeze(np.mean(np.asarray('+vars[0]+'_PT), axis=0))'
# )
#
# ## make predictions on testing data
# test_gen = get_data_generator_Nvars_miso_mimo(test_df, test_idx, False,
# vars, auxin, aux_mean, aux_std, len(test_idx), greyscale)
#
# del tmp
# x_test, tmp = next(test_gen)
# if len(vars)>1:
# counter = 0
# for v in vars:
# exec(v+\
# '_true = np.squeeze(CS[counter].inverse_transform(tmp[counter].reshape(-1,1)))'
# )
# counter +=1
# else:
# exec(vars[0]+\
# '_true = np.squeeze(CS[0].inverse_transform(tmp[0].reshape(-1,1)))'
# )
#
# for v in vars:
# exec(v+'_P = []')
#
# del tmp
# tmp = SM.predict(x_test, batch_size=8) #128)
# if len(vars)>1:
# counter = 0
# for v in vars:
# exec(
# v+\
# '_P.append(np.squeeze(CS[counter].inverse_transform(tmp[counter].reshape(-1,1))))'
# )
# counter +=1
# else:
# exec(
# vars[0]+\
# '_P.append(np.asarray(np.squeeze(CS[0].inverse_transform(tmp.reshape(-1,1)))))'
# )
#
# if len(vars)>1:
# for k in range(len(vars)):
# exec(
# vars[k]+\
# '_pred = np.squeeze(np.mean(np.asarray('+vars[k]+'_P), axis=0))'
# )
# else:
# exec(
# vars[0]+\
# '_pred = np.squeeze(np.mean(np.asarray('+vars[0]+'_P), axis=0))'
# )
#
#
# if len(vars)==9:
# nrows = 3; ncols = 3
# elif len(vars)==8:
# nrows = 4; ncols = 2
# elif len(vars)==7:
# nrows = 4; ncols = 2
# elif len(vars)==6:
# nrows = 3; ncols = 2
# elif len(vars)==5:
# nrows = 3; ncols = 2
# elif len(vars)==4:
# nrows = 2; ncols = 2
# elif len(vars)==3:
# nrows = 3; ncols = 1
# elif len(vars)==2:
# nrows = 2; ncols = 1
# elif len(vars)==1:
# nrows = 1; ncols = 1
#
# ## make a plot
# fig = plt.figure(figsize=(4*nrows,4*ncols))
# labs = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
# for k in range(1,1+(nrows*ncols)):
# plt.subplot(nrows,ncols,k)
# x = eval(vars[k-1]+'_trueT')
# y = eval(vars[k-1]+'_predT')
# plt.plot(x, y, 'ko', markersize=5)
# plt.plot(eval(vars[k-1]+'_true'), eval(vars[k-1]+'_pred'),
# 'bx', markersize=5)
# plt.plot([ np.min(np.hstack((x,y))), np.max(np.hstack((x,y)))],
# [ np.min(np.hstack((x,y))), np.max(np.hstack((x,y)))], 'k', lw=2)
#
# plt.text(np.nanmin(x), 0.96*np.max(np.hstack((x,y))),'Test : '+\
# str(np.mean(100*(np.abs(eval(vars[k-1]+'_pred') -\
# eval(vars[k-1]+'_true')) / eval(vars[k-1]+'_true'))))[:5]+\
# ' %', fontsize=8, color='b')
# plt.text(np.nanmin(x), np.max(np.hstack((x,y))),'Train : '+\
# str(np.mean(100*(np.abs(eval(vars[k-1]+'_predT') -\
# eval(vars[k-1]+'_trueT')) / eval(vars[k-1]+'_trueT'))))[:5]+\
# ' %', fontsize=8)
# plt.title(r''+labs[k-1]+') '+vars[k-1], fontsize=8, loc='left')
#
# varstring = ''.join([str(k)+'_' for k in vars])
#
# plt.savefig(weights_path.replace('.hdf5', '_skill.png'),
# dpi=300, bbox_inches='tight')
# plt.close()
# del fig
#
#
# ###===================================================
# def get_data_generator_Nvars_miso_mimo(df, indices, for_training, vars, auxin,
# batch_size, greyscale, CS, CSaux): ##BATCH_SIZE
# """
# This function generates data for a batch of images and 1 auxilliary variable,
# and N associated output metrics
# """
# if len(vars)==1:
# images, a, p1s = [], [], []
# elif len(vars)==2:
# images, a, p1s, p2s = [], [], [], []
# elif len(vars)==3:
# images, a, p1s, p2s, p3s = [], [], [], [], []
# elif len(vars)==4:
# images, a, p1s, p2s, p3s, p4s = [], [], [], [], [], []
# elif len(vars)==5:
# images, a, p1s, p2s, p3s, p4s, p5s = [], [], [], [], [], [], []
# elif len(vars)==6:
# images, a, p1s, p2s, p3s, p4s, p5s, p6s = \
# [], [], [], [], [], [], [], []
# elif len(vars)==7:
# images, a, p1s, p2s, p3s, p4s, p5s, p6s, p7s = \
# [], [], [], [], [], [], [], [], []
# elif len(vars)==8:
# images, a, p1s, p2s, p3s, p4s, p5s, p6s, p7s, p8s = \
# [], [], [], [], [], [], [], [], [], []
# elif len(vars)==9:
# images, a, p1s, p2s, p3s, p4s, p5s, p6s, p7s, p8s, p9s = \
# [], [], [], [], [], [], [], [], [], [], []
#
# while True:
# for i in indices:
# r = df.iloc[i]
# if len(vars)==1:
# file, p1, aa = r['files'], r[vars[0]], r[auxin]
# if len(vars)==2:
# file, p1, p2, aa = \
# r['files'], r[vars[0]], r[vars[1]], r[auxin]
# if len(vars)==3:
# file, p1, p2, p3, aa = \
# r['files'], r[vars[0]], r[vars[1]], r[vars[2]], r[auxin]
# if len(vars)==4:
# file, p1, p2, p3, p4, aa = \
# r['files'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[auxin]
# if len(vars)==5:
# file, p1, p2, p3, p4, p5, aa = \
# r['files'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[vars[4]], r[auxin]
# if len(vars)==6:
# file, p1, p2, p3, p4, p5, p6, aa = \
# r['files'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[vars[4]], r[vars[5]], r[auxin]
# if len(vars)==7:
# file, p1, p2, p3, p4, p5, p6, p7, aa =\
# r['files'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[vars[4]], r[vars[5]], r[vars[6]], r[auxin]
# if len(vars)==8:
# file, p1, p2, p3, p4, p5, p6, p7, p8, aa = \
# r['files'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[vars[4]], r[vars[5]], r[vars[6]], r[vars[7]], r[auxin]
# elif len(vars)==9:
# file, p1, p2, p3, p4, p5, p6, p7, p8, p9, aa = \
# r['files'], r[vars[0]], r[vars[1]], r[vars[2]], r[vars[3]], r[vars[4]], r[vars[5]], r[vars[6]], r[vars[7]], r[vars[8]], r[auxin]
#
# if greyscale==True:
# im = Image.open(file).convert('LA')
# else:
# im = Image.open(file)
# im = im.resize((IM_HEIGHT, IM_HEIGHT))
# im = np.array(im) / 255.0
#
# if np.ndim(im)==2:
# im = np.dstack((im, im , im)) ##np.expand_dims(im[:,:,0], axis=2)
#
# im = im[:,:,:3]
#
# if greyscale==True:
# images.append(np.expand_dims(im, axis=2))
# else:
# images.append(im)
#
# if len(vars)==1:
# p1s.append(p1); a.append(aa)
# elif len(vars)==2:
# p1s.append(p1); p2s.append(p2); a.append(aa)
# elif len(vars)==3:
# p1s.append(p1); p2s.append(p2); a.append(aa)
# p3s.append(p3);
# elif len(vars)==4:
# p1s.append(p1); p2s.append(p2); a.append(aa)
# p3s.append(p3); p4s.append(p4)
# elif len(vars)==5:
# p1s.append(p1); p2s.append(p2); a.append(aa)
# p3s.append(p3); p4s.append(p4)
# p5s.append(p5);
# elif len(vars)==6:
# p1s.append(p1); p2s.append(p2); a.append(aa)
# p3s.append(p3); p4s.append(p4)
# p5s.append(p5); p6s.append(p6)
# elif len(vars)==7:
# p1s.append(p1); p2s.append(p2); a.append(aa)
# p3s.append(p3); p4s.append(p4)
# p5s.append(p5); p6s.append(p6)
# p7s.append(p7);
# elif len(vars)==8:
# p1s.append(p1); p2s.append(p2); a.append(aa)
# p3s.append(p3); p4s.append(p4)
# p5s.append(p5); p6s.append(p6)
# p7s.append(p7); p8s.append(p8)
# elif len(vars)==9:
# p1s.append(p1); p2s.append(p2); a.append(aa)
# p3s.append(p3); p4s.append(p4)
# p5s.append(p5); p6s.append(p6)
# p7s.append(p7); p8s.append(p8)
# p9s.append(p9)
#
#
# if len(images) >= batch_size:
# if len(vars)==1:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# a = np.squeeze(CSaux[0].transform(np.array(a).reshape(-1, 1)))
# yield [np.array(a), np.array(images)], [np.array(p1s)]
# images, a, p1s = [], [], []
# elif len(vars)==2:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# a = np.squeeze(CSaux[0].transform(np.array(a).reshape(-1, 1)))
# yield [np.array(a), np.array(images)],[np.array(p1s), np.array(p2s)]
# images, a, p1s, p2s = [], [], [], []
# elif len(vars)==3:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# a = np.squeeze(CSaux[0].transform(np.array(a).reshape(-1, 1)))
# yield [np.array(a), np.array(images)],[np.array(p1s), np.array(p2s), np.array(p3s)]
# images, a, p1s, p2s, p3s = [], [], [], [], []
# elif len(vars)==4:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# a = np.squeeze(CSaux[0].transform(np.array(a).reshape(-1, 1)))
# yield [np.array(a), np.array(images)],[np.array(p1s), np.array(p2s), np.array(p3s), np.array(p4s)]
# images, a, p1s, p2s, p3s, p4s = [], [], [], [], [], []
# elif len(vars)==5:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# p5s = np.squeeze(CS[4].transform(np.array(p5s).reshape(-1, 1)))
# a = np.squeeze(CSaux[0].transform(np.array(a).reshape(-1, 1)))
# yield [np.array(a), np.array(images)],[np.array(p1s), np.array(p2s), np.array(p3s),
# np.array(p4s), np.array(p5s)]
# images, a, p1s, p2s, p3s, p4s, p5s = \
# [], [], [], [], [], [], []
# elif len(vars)==6:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# p5s = np.squeeze(CS[4].transform(np.array(p5s).reshape(-1, 1)))
# p6s = np.squeeze(CS[5].transform(np.array(p6s).reshape(-1, 1)))
# a = np.squeeze(CSaux[0].transform(np.array(a).reshape(-1, 1)))
# yield [np.array(a), np.array(images)],[np.array(p1s), np.array(p2s), np.array(p3s),
# np.array(p4s), np.array(p5s), np.array(p6s)]
# images, a, p1s, p2s, p3s, p4s, p5s, p6s = \
# [], [], [], [], [], [], [], []
# elif len(vars)==7:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# p5s = np.squeeze(CS[4].transform(np.array(p5s).reshape(-1, 1)))
# p6s = np.squeeze(CS[5].transform(np.array(p6s).reshape(-1, 1)))
# p7s = np.squeeze(CS[6].transform(np.array(p7s).reshape(-1, 1)))
# a = np.squeeze(CSaux[0].transform(np.array(a).reshape(-1, 1)))
# yield [np.array(a), np.array(images)],[np.array(p1s), np.array(p2s), np.array(p3s),
# np.array(p4s), np.array(p5s), np.array(p6s), np.array(p7s)]
# images, a, p1s, p2s, p3s, p4s, p5s, p6s, p7s = \
# [], [], [], [], [], [], [], [], []
# elif len(vars)==8:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# p5s = np.squeeze(CS[4].transform(np.array(p5s).reshape(-1, 1)))
# p6s = np.squeeze(CS[5].transform(np.array(p6s).reshape(-1, 1)))
# p7s = np.squeeze(CS[6].transform(np.array(p7s).reshape(-1, 1)))
# p8s = np.squeeze(CS[7].transform(np.array(p8s).reshape(-1, 1)))
# a = np.squeeze(CSaux[0].transform(np.array(a).reshape(-1, 1)))
# yield [np.array(a), np.array(images)],[np.array(p1s), np.array(p2s), np.array(p3s),
# np.array(p4s), np.array(p5s), np.array(p6s),
# np.array(p7s), np.array(p8s)]
# images, a, p1s, p2s, p3s, p4s, p5s, p6s, p7s, p8s = \
# [], [], [], [], [], [], [], [], [], []
# elif len(vars)==9:
# p1s = np.squeeze(CS[0].transform(np.array(p1s).reshape(-1, 1)))
# p2s = np.squeeze(CS[1].transform(np.array(p2s).reshape(-1, 1)))
# p3s = np.squeeze(CS[2].transform(np.array(p3s).reshape(-1, 1)))
# p4s = np.squeeze(CS[3].transform(np.array(p4s).reshape(-1, 1)))
# p5s = np.squeeze(CS[4].transform(np.array(p5s).reshape(-1, 1)))
# p6s = np.squeeze(CS[5].transform(np.array(p6s).reshape(-1, 1)))
# p7s = np.squeeze(CS[6].transform(np.array(p7s).reshape(-1, 1)))
# p8s = np.squeeze(CS[7].transform(np.array(p8s).reshape(-1, 1)))
# p9s = np.squeeze(CS[8].transform(np.array(p9s).reshape(-1, 1)))
# a = np.squeeze(CSaux[0].transform(np.array(a).reshape(-1, 1)))
# try:
# yield [np.array(a), np.array(images)],[np.array(p1s), np.array(p2s), np.array(p3s),
# np.array(p4s), np.array(p5s), np.array(p6s),
# np.array(p7s), np.array(p8s), np.array(p9s)]
# except GeneratorExit:
# print(" ") #pass
# images, a, p1s, p2s, p3s, p4s, p5s, p6s, p7s, p8s, p9s = \
# [], [], [], [], [], [], [], [], [], [], []
# if not for_training:
# break