dbleek commited on
Commit
71ee167
·
1 Parent(s): eb6399e

removed unnecessary files

Browse files
Files changed (2) hide show
  1. milestone-2.py +26 -26
  2. milestone-3.py +72 -72
milestone-2.py CHANGED
@@ -1,26 +1,26 @@
1
- import streamlit as st
2
- from transformers import (AutoTokenizer, TFAutoModelForSequenceClassification,
3
- pipeline)
4
-
5
- st.title("CS-GY-6613 Project Milestone 2")
6
- model_choices = (
7
- "distilbert-base-uncased-finetuned-sst-2-english",
8
- "j-hartmann/emotion-english-distilroberta-base",
9
- "joeddav/distilbert-base-uncased-go-emotions-student",
10
- )
11
-
12
- with st.form("Input Form"):
13
- text = st.text_area("Write your text here:", "CS-GY-6613 is a great course!")
14
- model_name = st.selectbox("Select a model:", model_choices)
15
- submitted = st.form_submit_button("Submit")
16
-
17
- if submitted:
18
- model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
19
- tokenizer = AutoTokenizer.from_pretrained(model_name)
20
- classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
21
- res = classifier(text)
22
- label = res[0]["label"].upper()
23
- score = res[0]["score"]
24
- st.markdown(
25
- f"This text was classified as **{label}** with a confidence score of **{score}**."
26
- )
 
1
+ import streamlit as st
2
+ from transformers import (AutoTokenizer, TFAutoModelForSequenceClassification,
3
+ pipeline)
4
+
5
+ st.title("CS-GY-6613 Project Milestone 2")
6
+ model_choices = (
7
+ "distilbert-base-uncased-finetuned-sst-2-english",
8
+ "j-hartmann/emotion-english-distilroberta-base",
9
+ "joeddav/distilbert-base-uncased-go-emotions-student",
10
+ )
11
+
12
+ with st.form("Input Form"):
13
+ text = st.text_area("Write your text here:", "CS-GY-6613 is a great course!")
14
+ model_name = st.selectbox("Select a model:", model_choices)
15
+ submitted = st.form_submit_button("Submit")
16
+
17
+ if submitted:
18
+ model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
19
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
20
+ classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
21
+ res = classifier(text)
22
+ label = res[0]["label"].upper()
23
+ score = res[0]["score"]
24
+ st.markdown(
25
+ f"This text was classified as **{label}** with a confidence score of **{score}**."
26
+ )
milestone-3.py CHANGED
@@ -1,72 +1,72 @@
1
- import streamlit as st
2
- import torch
3
- from datasets import load_dataset
4
- from transformers import AutoTokenizer
5
- from transformers import AutoModelForSequenceClassification
6
- from transformers import pipeline
7
-
8
- # Load HUPD dataset
9
- dataset_dict = load_dataset('HUPD/hupd',
10
- name='sample',
11
- data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
12
- icpr_label=None,
13
- train_filing_start_date='2016-01-01',
14
- train_filing_end_date='2016-01-21',
15
- val_filing_start_date='2016-01-22',
16
- val_filing_end_date='2016-01-31',
17
- )
18
-
19
- # Process data
20
- filtered_dataset = dataset_dict['validation'].filter(lambda e: e['decision'] == 'ACCEPTED' or e['decision'] == 'REJECTED')
21
- dataset = filtered_dataset.shuffle(seed=42).select(range(20))
22
- dataset = dataset.sort("patent_number")
23
-
24
-
25
- # Create pipeline using model trainned on Colab
26
- model = torch.load("/workspaces/cs-gy-6613-project/patent_classification(1).pt", map_location=torch.device('cpu'))
27
- tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
28
- classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
29
-
30
-
31
-
32
- def load_patent():
33
- selected_application = dataset.select([applications[st.session_state.id]])
34
- st.session_state.abstract = selected_application['abstract'][0]
35
- st.session_state.claims = selected_application['claims'][0]
36
- st.session_state.title = selected_application['title'][0]
37
-
38
-
39
-
40
- st.title("CS-GY-6613 Project Milestone 3")
41
-
42
- # List patent numbers for select box
43
- applications = {}
44
- for ds_index, example in enumerate(dataset):
45
- applications.update({example['patent_number']: ds_index })
46
- st.selectbox("Select a patent application:", applications, on_change=load_patent, key="id")
47
-
48
- # Application title displayed for additional context only, not used with model
49
- st.text_area("Title", key="title", value=dataset[0]['title'], height=50)
50
-
51
- # Classifier input form
52
- with st.form('Input Form'):
53
- abstract = st.text_area("Abstract", key="abstract", value=dataset[0]['abstract'], height=200)
54
- claims = st.text_area("Claims", key="claims", value=dataset[0]['abstract'], height=200)
55
- submitted = st.form_submit_button("Get Patentability Score")
56
-
57
- if submitted:
58
- selected_application = dataset.select([applications[st.session_state.id]])
59
- res = classifier(abstract, claims)
60
- if res[0]["label"] == 'LABEL_0':
61
- pred = "ACCEPTED"
62
- elif res[0]["label"] == 'LABEL_1':
63
- pred = "REJECTED"
64
- score = res[0]["score"]
65
- label = selected_application['decision'][0]
66
- result = st.markdown("This text was classified as **{}** with a confidence score of **{}**.".format(pred, score))
67
- check = st.markdown("Actual Label: **{}**.".format(label))
68
-
69
-
70
-
71
-
72
-
 
1
+ import streamlit as st
2
+ import torch
3
+ from datasets import load_dataset
4
+ from transformers import AutoTokenizer
5
+ from transformers import AutoModelForSequenceClassification
6
+ from transformers import pipeline
7
+
8
+ # Load HUPD dataset
9
+ dataset_dict = load_dataset('HUPD/hupd',
10
+ name='sample',
11
+ data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
12
+ icpr_label=None,
13
+ train_filing_start_date='2016-01-01',
14
+ train_filing_end_date='2016-01-21',
15
+ val_filing_start_date='2016-01-22',
16
+ val_filing_end_date='2016-01-31',
17
+ )
18
+
19
+ # Process data
20
+ filtered_dataset = dataset_dict['validation'].filter(lambda e: e['decision'] == 'ACCEPTED' or e['decision'] == 'REJECTED')
21
+ dataset = filtered_dataset.shuffle(seed=42).select(range(20))
22
+ dataset = dataset.sort("patent_number")
23
+
24
+
25
+ # Create pipeline using model trainned on Colab
26
+ model = torch.load("/workspaces/cs-gy-6613-project/patent_classification(1).pt", map_location=torch.device('cpu'))
27
+ tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
28
+ classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
29
+
30
+
31
+
32
+ def load_patent():
33
+ selected_application = dataset.select([applications[st.session_state.id]])
34
+ st.session_state.abstract = selected_application['abstract'][0]
35
+ st.session_state.claims = selected_application['claims'][0]
36
+ st.session_state.title = selected_application['title'][0]
37
+
38
+
39
+
40
+ st.title("CS-GY-6613 Project Milestone 3")
41
+
42
+ # List patent numbers for select box
43
+ applications = {}
44
+ for ds_index, example in enumerate(dataset):
45
+ applications.update({example['patent_number']: ds_index })
46
+ st.selectbox("Select a patent application:", applications, on_change=load_patent, key="id")
47
+
48
+ # Application title displayed for additional context only, not used with model
49
+ st.text_area("Title", key="title", value=dataset[0]['title'], height=50)
50
+
51
+ # Classifier input form
52
+ with st.form('Input Form'):
53
+ abstract = st.text_area("Abstract", key="abstract", value=dataset[0]['abstract'], height=200)
54
+ claims = st.text_area("Claims", key="claims", value=dataset[0]['abstract'], height=200)
55
+ submitted = st.form_submit_button("Get Patentability Score")
56
+
57
+ if submitted:
58
+ selected_application = dataset.select([applications[st.session_state.id]])
59
+ res = classifier(abstract, claims)
60
+ if res[0]["label"] == 'LABEL_0':
61
+ pred = "ACCEPTED"
62
+ elif res[0]["label"] == 'LABEL_1':
63
+ pred = "REJECTED"
64
+ score = res[0]["score"]
65
+ label = selected_application['decision'][0]
66
+ result = st.markdown("This text was classified as **{}** with a confidence score of **{}**.".format(pred, score))
67
+ check = st.markdown("Actual Label: **{}**.".format(label))
68
+
69
+
70
+
71
+
72
+