sachacks2023 / app.py
dawng88's picture
Update app.py
0d9ea28
raw
history blame
283 Bytes
import streamlit as st
from transformers import pipeline
text = st.text_area('enter some text:')
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
classifier(text)
if text:
out = pipe(text)
st.json(out)