Spaces:
Runtime error
Runtime error
import joblib | |
import pandas as pd | |
import plotly.graph_objects as go | |
import plotly.express as px | |
hgb = joblib.load('hgb_classifier.joblib') | |
FEATS = [ | |
'srcip', | |
'sport', | |
'dstip', | |
'dsport', | |
'proto', | |
#'state', I dropped this one when I trained the model | |
'dur', | |
'sbytes', | |
'dbytes', | |
'sttl', | |
'dttl', | |
'sloss', | |
'dloss', | |
'service', | |
'Sload', | |
'Dload', | |
'Spkts', | |
'Dpkts', | |
'swin', | |
'dwin', | |
'stcpb', | |
'dtcpb', | |
'smeansz', | |
'dmeansz', | |
'trans_depth', | |
'res_bdy_len', | |
'Sjit', | |
'Djit', | |
'Stime', | |
'Ltime', | |
'Sintpkt', | |
'Dintpkt', | |
'tcprtt', | |
'synack', | |
'ackdat', | |
'is_sm_ips_ports', | |
'ct_state_ttl', | |
'ct_flw_http_mthd', | |
'is_ftp_login', | |
'ct_ftp_cmd', | |
'ct_srv_src', | |
'ct_srv_dst', | |
'ct_dst_ltm', | |
'ct_src_ltm', | |
'ct_src_dport_ltm', | |
'ct_dst_sport_ltm', | |
'ct_dst_src_ltm', | |
] | |
# plotly only has the CSS named colors | |
# I don't think I can use xkcd colors | |
# I copied a bunch of CSS colors from somewhere online | |
# and then deleted whites and things that showed up too close on the tree | |
# this is not really a general solution, it just works for this specific tree | |
# I'll have to come up with a better colormap at some point | |
COLORS = [ | |
'aliceblue','aqua','aquamarine','azure', | |
'bisque','black','blanchedalmond','blue', | |
'blueviolet','brown','burlywood','cadetblue', | |
'chartreuse','chocolate','coral','cornflowerblue', | |
'cornsilk','crimson','cyan','darkblue','darkcyan', | |
'darkgoldenrod','darkgray','darkgreen', | |
'darkkhaki','darkmagenta','darkolivegreen','darkorange', | |
'darkorchid','darkred','darksalmon','darkseagreen', | |
'darkslateblue','darkslategray', | |
'darkturquoise','darkviolet','deeppink','deepskyblue', | |
'dimgray','dodgerblue', | |
'forestgreen','fuchsia','gainsboro', | |
'gold','goldenrod','gray','green', | |
'greenyellow','honeydew','hotpink','indianred','indigo', | |
'ivory','khaki','lavender','lavenderblush','lawngreen', | |
'lemonchiffon','lightblue','lightcoral','lightcyan', | |
'lightgoldenrodyellow','lightgray', | |
'lightgreen','lightpink','lightsalmon','lightseagreen', | |
'lightskyblue','lightslategray', | |
'lightsteelblue','lightyellow','lime','limegreen', | |
'linen','magenta','maroon','mediumaquamarine', | |
'mediumblue','mediumorchid','mediumpurple', | |
'mediumseagreen','mediumslateblue','mediumspringgreen', | |
'mediumturquoise','mediumvioletred','midnightblue', | |
'mintcream','mistyrose','moccasin','navy', | |
'oldlace','olive','olivedrab','orange','orangered', | |
'orchid','palegoldenrod','palegreen','paleturquoise', | |
'palevioletred','papayawhip','peachpuff','peru','pink', | |
'plum','powderblue','purple','red','rosybrown', | |
'royalblue','saddlebrown','salmon','sandybrown', | |
'seagreen','seashell','sienna','silver','skyblue', | |
'slateblue','slategray','slategrey','snow','springgreen', | |
'steelblue','tan','teal','thistle','tomato','turquoise', | |
'violet','wheat','yellow','yellowgreen' | |
] | |
trees = [x[0].nodes for x in hgb._predictors] | |
# the final tree definitely has a similar structure but is noticably different | |
# that's really cool | |
# I think this will make a cool animation | |
# if I can figure it out | |
tree = pd.DataFrame(trees[0]) | |
#tree = pd.DataFrame(trees[9]) | |
# parents is going to be tricky | |
# I need get the index of whichever node has the current node listed in either left or right | |
parents = [None] | |
# keep track of whether each node is a left or right child of the parent in the list | |
directions = [None] | |
# it uses 0 to say "no left/right child" | |
# so I have to skip searching for node 0 | |
# which is fine b/c node 0 is the root | |
for i in tree.index[1:]: | |
# it seems to make a very even tree | |
# so just guess it's in the right side | |
# and that will be right half the time | |
parent = tree[tree['right']==i].index | |
if parent.empty: | |
parents.append(str(tree[tree['left']==i].index[0])) | |
directions.append('l') | |
else: | |
parents.append(str(parent[0])) | |
directions.append('r') | |
# generate the labels | |
# and the colors | |
labels = ['Histogram Gradient-Boosted Decision Tree'] | |
colors = ['white'] | |
for i, node, parent, direction in zip( | |
tree.index.to_numpy(), | |
tree.iterrows(), | |
parents, | |
directions | |
): | |
# skip the first one (the root) | |
if i == 0: | |
continue | |
node = node[1] | |
feat = FEATS[int(tree.loc[int(parent), 'feature_idx'])] | |
thresh = tree.loc[int(parent), 'num_threshold'] | |
if direction == 'l': | |
labels.append(f"[{i}] {feat} <= {thresh}") | |
else: | |
labels.append(f"[{i}] {feat} > {thresh}") | |
# colors | |
offset = FEATS.index(feat) | |
colors.append(COLORS[offset]) | |
# actual plot | |
f = go.Figure( | |
go.Treemap( | |
values=tree['count'].to_numpy(), | |
labels=labels, | |
ids=tree.index.to_numpy(), | |
parents=parents, | |
marker_colors=colors, | |
) | |
) | |
#f.update_layout( | |
# treemapcolorway = ['pink'] | |
#) | |
breakpoint() | |
# converting the ndarry with columns names to a pandas df | |
# 3284 bytes as an ndarry | |
# 3300 bytes as a dataframe | |
# so they're the same size | |
# do I need to convert it to pandas? idk | |
# just curious | |
# https://linuxtut.com/en/ffb2e319db5545965933/ | |
# https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/ensemble/_hist_gradient_boosting/_predictor.pyx | |
# figuring out how the thing works | |
# `value` is the predicted class / value / whatever | |
# so if it's a leaf node, it returns that value as the prediction | |
# there are negative values in some of the leaves | |
# maybe the classes are +/-1 instead of 0/1? | |
# if the data value is <= `num_threshold` then it goes in the left node | |
# if it's > `num_threshold` then it goes in the right node | |
# okay and then all the leave have feature_idx=0, num_threshold=0, left=0, right=0 | |
# that makes sense | |
# still kind of annoying that they use 0 instead of np.nan but oh well | |
# also super super hard to figure out what the labels on the tree map should be | |
# like it has to check the parent's feature_idx and num_threshold | |
# which I guess isn't too bad once we have the list of parents already built | |
# except that I don't know whether a node is left or right from its parent | |
# hmmmm | |