|
|
import torch |
|
|
from torch import nn, optim |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Unet(nn.Module): |
|
|
def __init__(self, input_c=1, output_c=2, num_filters=128): |
|
|
super().__init__() |
|
|
self.model = nn.Sequential( |
|
|
nn.Conv2d(input_c,64,kernel_size=4,stride = 1,padding="same"), |
|
|
nn.BatchNorm2d(64), |
|
|
nn.LeakyReLU(0.2, True), |
|
|
nn.Conv2d(64,128,kernel_size=4,stride=2,padding=1), |
|
|
nn.BatchNorm2d(128), |
|
|
nn.LeakyReLU(0.2, True), |
|
|
nn.Conv2d(128,256,kernel_size=4,stride=2,padding=1), |
|
|
nn.BatchNorm2d(256), |
|
|
nn.LeakyReLU(0.2, True), |
|
|
nn.Conv2d(256,256,kernel_size=4,stride=2,padding=1), |
|
|
nn.BatchNorm2d(256), |
|
|
nn.LeakyReLU(0.2, True), |
|
|
nn.Conv2d(256,512,kernel_size=4,stride=2,padding=1), |
|
|
nn.BatchNorm2d(512), |
|
|
nn.LeakyReLU(0.2, True), |
|
|
nn.Conv2d(512,512,kernel_size=4,stride=2,padding=1), |
|
|
nn.BatchNorm2d(512), |
|
|
nn.LeakyReLU(0.2, True), |
|
|
|
|
|
nn.ConvTranspose2d(512,512,kernel_size=4,stride=2,padding=1), |
|
|
nn.BatchNorm2d(512), |
|
|
nn.ReLU(True), |
|
|
nn.ConvTranspose2d(512,256,kernel_size=4,stride=2,padding=1), |
|
|
nn.BatchNorm2d(256), |
|
|
nn.ReLU(True), |
|
|
nn.ConvTranspose2d(256,256,kernel_size=4,stride=2,padding=1), |
|
|
nn.BatchNorm2d(256), |
|
|
nn.ReLU(True), |
|
|
nn.ConvTranspose2d(256,128,kernel_size=4,stride=2,padding=1), |
|
|
nn.BatchNorm2d(128), |
|
|
nn.ReLU(True), |
|
|
nn.ConvTranspose2d(128,64,kernel_size=4,stride=2,padding=1), |
|
|
nn.BatchNorm2d(64), |
|
|
nn.ReLU(True), |
|
|
nn.Conv2d(64,output_c, kernel_size=1,stride=1), |
|
|
nn.Tanh() |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.model(x) |
|
|
class PatchDiscriminator(nn.Module): |
|
|
def __init__(self, input_c, num_filters=64, n_down=3): |
|
|
super().__init__() |
|
|
model = [self.get_layers(input_c, num_filters, norm=False)] |
|
|
model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2) |
|
|
for i in range(n_down)] |
|
|
|
|
|
model += [self.get_layers(num_filters * 2 ** n_down, 1, s=1, norm=False, act=False)] |
|
|
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
|
|
def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True): |
|
|
layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)] |
|
|
if norm: layers += [nn.BatchNorm2d(nf)] |
|
|
if act: layers += [nn.LeakyReLU(0.2, True)] |
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.model(x) |
|
|
|
|
|
class GANLoss(nn.Module): |
|
|
def __init__(self, gan_mode='vanilla', real_label=1.0, fake_label=0.0): |
|
|
super().__init__() |
|
|
self.register_buffer('real_label', torch.tensor(real_label)) |
|
|
self.register_buffer('fake_label', torch.tensor(fake_label)) |
|
|
if gan_mode == 'vanilla': |
|
|
self.loss = nn.BCEWithLogitsLoss() |
|
|
elif gan_mode == 'lsgan': |
|
|
self.loss = nn.MSELoss() |
|
|
|
|
|
def get_labels(self, preds, target_is_real): |
|
|
if target_is_real: |
|
|
labels = self.real_label |
|
|
else: |
|
|
labels = self.fake_label |
|
|
return labels.expand_as(preds) |
|
|
|
|
|
def __call__(self, preds, target_is_real): |
|
|
labels = self.get_labels(preds, target_is_real) |
|
|
loss = self.loss(preds, labels) |
|
|
return loss |
|
|
|
|
|
def init_weights(net, init='norm', gain=0.02): |
|
|
|
|
|
def init_func(m): |
|
|
classname = m.__class__.__name__ |
|
|
if hasattr(m, 'weight') and 'Conv' in classname: |
|
|
if init == 'norm': |
|
|
nn.init.normal_(m.weight.data, mean=0.0, std=gain) |
|
|
elif init == 'xavier': |
|
|
nn.init.xavier_normal_(m.weight.data, gain=gain) |
|
|
elif init == 'kaiming': |
|
|
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') |
|
|
|
|
|
if hasattr(m, 'bias') and m.bias is not None: |
|
|
nn.init.constant_(m.bias.data, 0.0) |
|
|
elif 'BatchNorm2d' in classname: |
|
|
nn.init.normal_(m.weight.data, 1., gain) |
|
|
nn.init.constant_(m.bias.data, 0.) |
|
|
|
|
|
net.apply(init_func) |
|
|
print(f"model initialized with {init} initialization") |
|
|
return net |
|
|
|
|
|
def init_model(model, device): |
|
|
model = model.to(device) |
|
|
model = init_weights(model) |
|
|
return model |
|
|
|
|
|
class MainModel(nn.Module): |
|
|
def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4, |
|
|
beta1=0.5, beta2=0.999, lambda_L1=100.): |
|
|
super().__init__() |
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
self.lambda_L1 = lambda_L1 |
|
|
|
|
|
if net_G is None: |
|
|
self.net_G = init_model(Unet(input_c=1, output_c=2, num_filters=64), self.device) |
|
|
else: |
|
|
self.net_G = net_G.to(self.device) |
|
|
self.net_D = init_model(PatchDiscriminator(input_c=3, n_down=3, num_filters=64), self.device) |
|
|
self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device) |
|
|
self.L1criterion = nn.L1Loss() |
|
|
self.opt_G = optim.Adam(self.net_G.parameters(), lr=lr_G, betas=(beta1, beta2)) |
|
|
self.opt_D = optim.Adam(self.net_D.parameters(), lr=lr_D, betas=(beta1, beta2)) |
|
|
|
|
|
def set_requires_grad(self, model, requires_grad=True): |
|
|
for p in model.parameters(): |
|
|
p.requires_grad = requires_grad |
|
|
|
|
|
def setup_input(self, data): |
|
|
self.L = data['L'].to(self.device) |
|
|
self.ab = data['ab'].to(self.device) |
|
|
|
|
|
def forward(self): |
|
|
self.fake_color = self.net_G(self.L) |
|
|
|
|
|
def backward_D(self,epoch): |
|
|
fake_image = torch.cat([self.L, self.fake_color], dim=1) |
|
|
fake_preds = self.net_D(fake_image.detach()) |
|
|
self.loss_D_fake = self.GANcriterion(fake_preds, False) |
|
|
real_image = torch.cat([self.L, self.ab], dim=1) |
|
|
real_preds = self.net_D(real_image) |
|
|
self.loss_D_real = self.GANcriterion(real_preds, True) |
|
|
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 |
|
|
|
|
|
if epoch % 2 ==0: |
|
|
self.loss_D.backward() |
|
|
|
|
|
def backward_G(self): |
|
|
fake_image = torch.cat([self.L, self.fake_color], dim=1) |
|
|
fake_preds = self.net_D(fake_image) |
|
|
self.loss_G_GAN = self.GANcriterion(fake_preds, True) |
|
|
self.loss_G_L1 = self.L1criterion(self.fake_color, self.ab) * self.lambda_L1 |
|
|
self.loss_G = self.loss_G_GAN + self.loss_G_L1 |
|
|
self.loss_G.backward() |
|
|
|
|
|
def optimize(self, epoch): |
|
|
self.forward() |
|
|
self.net_D.train() |
|
|
self.set_requires_grad(self.net_D, True) |
|
|
self.opt_D.zero_grad() |
|
|
self.backward_D(epoch) |
|
|
if epoch % 2 ==0: |
|
|
self.opt_D.step() |
|
|
|
|
|
self.net_G.train() |
|
|
self.set_requires_grad(self.net_D, False) |
|
|
self.opt_G.zero_grad() |
|
|
self.backward_G() |
|
|
self.opt_G.step() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|