racism-gr / app.py
davidmasip's picture
better score
2d6ca9b
raw
history blame
1.24 kB
import os
import gradio as gr
from transformers import pipeline
RACISM_MODEL = "davidmasip/racism"
racism_analysis_pipe = pipeline(
"text-classification",
model=RACISM_MODEL,
tokenizer=RACISM_MODEL,
use_auth_token=os.getenv("access_token")
)
def racism_analysis(text):
results = racism_analysis_pipe(text)[0]
label = "Non-racist" if results["label"] == "LABEL_0" else "Racist"
score = (
1 - round(results["score"], 5)
if results["label"] == "LABEL_0"
else round(results["score"], 5)
)
return label, score
gradio_ui = gr.Interface(
fn=racism_analysis,
title="Racism Detector (Spanish)",
description="Enter some text and check if model detects racism.",
inputs=[
gr.inputs.Textbox(lines=5, label="Paste some text here"),
],
outputs=[
gr.outputs.Textbox(label="Label"),
gr.outputs.Textbox(label="Racism score"),
],
examples=[
["Unos menas roban a una mujer"],
["Unos chinos roban a una mujer"],
["Unos árabes roban a una mujer"],
["Unos moros roban a una mujer"],
["Unos panchitos roban a una mujer"],
["El gobierno levanta el confinamiento"]
],
)
gradio_ui.launch()